
 

Optimizing HANS Color Separation: Meet the CMY Metamers 
Peter Morovič, Ján Morovič, Juan Manuel García-Reyero 
Hewlett Packard, Sant Cugat del Vallés, Catalunya, Spain 

 
Abstract 

HANS – the Neugebauer Primary based color separation and 
halftoning print control approach – was presented in broad terms 
at CIC18. The present paper provides an in–depth look at how 
HANS color separation can be optimized, what level of variety it 
provides access to and how it can be used for direct optimization 
of print attributes. The results show that even in the case of having 
only three colorants – CMY, where current approaches lead to 
unique solutions, HANS provides significant metamer sets that 
lead to variety in print attributes such as the 12.7% ink use range 
show in the results. 

 

Introduction 
Print has many uses, each of which has different requirements 

in terms of print attributes. Professional photographers tend to 
focus on image quality, color accuracy and color gamut while print 
service providers pay close attention to cost and throughput. 
Architects and engineers care more about line and small text 
quality for their drawings, while looking for pleasing appearance in 
prints made of rendered work. The level at which each of a print’s 
attributes is achieved then depends on the materials used (inks, 
toners, substrates, varnishes, etc.), on the imaging technology and 
also on the color separation and halftoning algorithms used. Direct 
optimization of print attributes and their explicit trading–off is 
highly desirable, since color resources need to be tuned to 
individual substrate types and since a single printer model is 
typically aimed at more than one target use case. Having to tune 
resources by hand becomes costly and unreliable and also has to 
deal with the challenges of transitioning between individually 
chosen colorant combinations (Morovic, 2007). A solution to this 
problem is the Halftone Area Neugebauer Separation (HANS) 
approach presented at CIC18 (Morovic et al., 2010), which both 
gives access to a larger set of printable halftone patterns and allows 
for explicit optimization of print attributes.  

While the HANS approach was sketched out previously 
(Morovic et al., 2011), details of its color separation optimization 
will first be presented here. A brief summary of HANS will be 
followed by a detailed exposition of its optimization framework 
and the paper will conclude with results for the simple case of a 
printer with CMY inks and a bi–level halftoning mechanism. 

HANS 
While color separation has traditionally been thought of as the 

process of making choices about how much of each available 
colorant to use for each printable color, HANS changes the domain 
in which choices are made. Since print properties depend not only 
on colorant amounts, but also on the way in which the colorants 
are overprinted (or not), HANS color separation specifies relative 
area coverages of a printing system’s at–halftone–pixel states (the 
Neugebauer Primaries) (Figure 1). This move not only makes print 
control more direct, but it also unlocks a vastly greater space of 
printable patterns than a colorant space allows. The reason for this 

is that while a bi–level printing system with CMYK inks can 
specify output in a 4D space when controlled in terms of colorants, 
a switch to HANS gives access to a 24=16D space where choices 
can be made. Having k levels to halftone to (e.g., in a printer that 
can deposit up to two drops at the same printed location k=3) and n 
inks, gives HANS a knD space in which to specify output.  Such 
increased variety of printable patterns in turn leads to improved 
print properties such as being able to address 10% more color 
gamut while using 20% less ink than is currently possible on a 
CMYKcm printer (Morovic et al., 2011). 

 
Figure 1: Print anatomy. 

To take advantage of the potential HANS offers, it is 
necessary to first have a means for assigning Neugebauer Primary 
area coverages (NPacs) to printable colors and then to generate 
halftone patterns based on those NPac specification (Figure 2). As 
was presented previously, the halftoning part of the process can be 
achieved using error diffusion, where the error is diffused in the 
NPac space. For the color separation stage – i.e., colorimetry to 
NPac mapping – the present paper will introduce a general 
framework next followed by results for the simplest colorant case: 
CMY. 

Optimization framework 
To find a mapping from colorimetry to NPacs, the difference 

in domain dimensionality between the two spaces needs to be 
addressed first. While colorimetry is 3D (whether in CIE XYZ, 
LAB or other spaces), the domain of NPacs is typically of a much 
higher dimension. Consequently, the mapping is one–to–many and 
there are numerous NPacs that correspond to the same colorimetry 
– NPac metamer sets. The set of NPacs that map to the same 
colorimetry will, however, vary in other attributes such as grain, 
ink-use, color constancy, etc. The following first looks at how to 
solve for the set of all metamers, which is the set over which an 
optimization of print attributes is then performed. 

Fundamental to HANS is the assumption of a convex 
relationship between NP area coverages and resulting 
colorimetries: an NPac composed of two NPs at 50% area 
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coverage each has a colorimetry that is a 50% weighted sum of the 
constituent NPs’ colorimetries. Actual printing systems depart 
significantly from such a simple relationship though, due to optical 
and physical dot-gain, noise and drop shape. Globally and non–
linearly transforming the CIE XYZ space (e.g., as in the Yule–
Nielsen modification of the Neugebauer Model (Yule and Nielsen, 
1951)) can greatly improve the fit between the convexity principle 
and colorimetry obtained from print measurements, as will be 
shown in the results section.  

Since combining area coverages of NPs amounts to convex 
combinations of their colorimetries, the convex hull of all NPacs 
corresponds to the convex hull of their colorimetries. Without loss 
of generality, colorimetry will be referred to as being in XYZ 
space and behaving convexly with respect to NPacs, although 
convexity in a globally and non–linearly transformed XYZ may be 
used in practice. 

The colorimetric convex hull is obtained by first defining a set 
of base NPacs. This set determines the total gamut a given system 
will be able to reach and serves as a set of building blocks for all 
patterns interior to the gamut. The base NPac set consists of: 
1. The Neugebauer Primaries at 100% area coverage that are 

within the ink limit (i.e., the maximum amount of ink that a 
substrate can hold without artifacts and structural defects),  

2. a mapping of the remaining NPs that are beyond the ink limit 
onto it (i.e., by assigning these NPs a <100% area coverage 
and adding other NPs to it to bring the resulting NPac to the 
ink limit), and 

3. additional NPacs needed to span the full convex hull of 
possible NPacs. This convex hull is the result of intersecting 
the full NP simplex with a hyperplane at the ink–limit. 

These base NPacs are halftoned, printed and measured to 
obtain their colorimetries, which then characterize a system in 
terms of the volume of colorimetries and volume of NP area 
coverages that are possible. While colorimetries of the convex hull 
vertices have unique correspondence with NPacs, this is not true 
for all colorimetries interior to the gamut or even on parts of its 
surface. This is analogous to what happens in image capture where 
monochromatic signals have single member metamer sets, while 

colors towards the center of the gamut (e.g. a medium-gray) will 
have metamer sets of the largest volume (Morovic, 2002). 

The metamer set of a colorimetric sample S in NPac space can 
be computed analytically as a half–plane intersection problem. 
However the dimensionality of this computation equals the number 
of base NPs (or NPacs if ink limits are in place), which can range 
into the hundreds and is therefore prohibitive. Therefore, NPac 
metamer sets are computed by a polyhedral search instead: 
1. Given a set of p NPs and their measured colorimetries, form all ∑  polyhedra with up to n vertices (n � [4, p]) in the 

colorimetric space. 
2. For a given color S with XYZ of [SX, SY, SZ], whose metamer 

set is to be found, compute its barycentric coordinates [b1, b2, 
…, bp] with respect to each of the polyhedra formed by vertices 
[V1, V2, …, Vp] from step 1. In the case of a tetrahedron, where 
p=4, finding the barycentric coordinates amounts to solving 
the following equation: 
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 (2) 
The matrix with the XYZ values of the tetrahedron vertices can 
be inverted, thus directly giving a solution vector.  Equation 2 
is the system formed by three equations expressing how S is 
the convex combination of V1 to V4 and the equation of b1 to b4 
(the convex weights) summing to one. If all members of b are 
from [0,1], S is inside the polyhedron. Furthermore, since b 
represents normalized volumes of sub-tetrahedra formed by 
sets of three original vertices and S (for the original vertex that 
S substitutes), they are also the relative area coverages with 
which tetrahedron vertex NPs need to be combined. Note 
however that Eq. 2 is well formed only for tetrahedra, while it 
becomes under-determined for pentahedra and higher, in which 
case the above equation would yield a single solution out of a 
convex set of possible ones. 

3. The set of NPacs obtained from step 2 delimits the metamer set 
of color S in NPac space. Note that due to the convexity of the 

 
Figure 2: HANS workflow for simplest color separation setup via NP convex hull tetrahedralization and using error diffusion halftoning. 
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NPac space, the metamer set can be further sampled by 
generating arbitrary convex combinations of NPacs obtained 
from step 2. 
While Eq. 2 is well formed and uniquely solvable for 

tetrahedra, it can be written for higher-degree polyhedral easily as 
follows: 
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Equation (3) is no longer well-formed and has a set of 
solutions by virtue of being under-determined. The set of these 
solutions (sets of [b1, b2, b3, …, bP] vectors) itself is a convex set. 
However, in order to have a higher-dimensional representation, a 
single solution can be obtained by means of a pseudo-inverse. 
Denoting Bp the 1xp column vector of barycentric coordinates on 
the left hand-side of Eq. 3, S the 1x4 vector containing the sample 
XYZ and a 1 and Vp the px4 matrix of vertex XYZs padded with 1, 
the solution can be obtained as follows: 

BpVp = S

BpVpVp
T (VpVp

T )−1 = SVp
T (VpVp

T )−1

B = SVp
+

 (4) 

The set of all possible barycentric coordinates within all 
possible polyhedra that, when combined as NPac weights, match a 
given colorimetry is therefore the metamer set.  

Since for any one colorimetry, a single NPac has to be 
selected in order to construct a colorimetry to NPac mapping, the 
metamer sets represent the domain over which this choice is made. 
The choice of a metamer will depend on print-attribute 
considerations, such as selecting the metamer that at each 
colorimetry uses least ink, or the metamer that results in least 
grainy patterns, is most color constant, etc., or any weighted 
combination of these. Since this approach solves the complete set 
of metamers, the patterns that are the results of all possible 
traditional color separation and halftoning configurations are a 
subset of this metamer set. 

Test set-up 
To test the HANS optimization framework presented above, a 

HP Designjet Z3200 printer was used. While this printer has 11 
inks: CMmYnNkKRGB (where n and N are grays – ‘neutrals’), 
only three of them: CMY, were used. The reason for selecting 
three inks only is that in that case, colorant–based color separations 
provide no redundancy and therefore lead to single ink 
combinations per printable color. Any redundancy (metamerism) 
delivered by HANS will therefore be down to the variety it gives 
access to over and above current methods. The substrate on which 
prints were made was a HP Super Heavyweight Coated Paper and 
all color measurements were made using an XRite i1 0°/45° 
spectrophotometer embedded in the printer. All color differences 
were computed using the CIE ∆E2000(1:1) color difference metric 
(CIE, 2001) and the Yule–Nielsen modified Neugebauer model 
used here (with n=4) had a median error of 5.2 ∆E2000 with a 95th 
percentile of 12.9. Note that these model errors would not be the 
errors of prints made with the resulting system, since it would have 
an ICC profile built on top of the colorimetry to NPac mapping. 

Instead they do limit the accuracy of the metamer sets and the 
optimality of the choices made from them. 

Results 

 
Figure 4: A visualization of 115 metamers: each row represents an NP area 
coverage vector where constituent color block lengths are proportional to the 
corresponding base NPac color’s relative area coverage. 

In the case of a three ink system two states per ink per 
halftone pixel (one or no ink drop), there are 8 Neugebauer 
Primaries (W, C, M, Y, CM, CY, MY, CMY) for a given ink 
order. However, even in this small set, some NPs will be over the 
ink-limit of the substrate, which will be addressed as outlined 
above.  

For example the fourth patch in Figure 3 shows the 
colorimetry of a YM overprint, which at full area coverage would 
be over the ink-limit, combined with W in order not to exceed the 
ink-limit. This results in an NPac where 37.5% of halftone pixels 
are left blank and 62.5% have Yellow and Magenta overprinting. 
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