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Abstract
We present a novel approach to adaptively selecting a color

workflow solution per document. The success of a color man-

agement solution is often dependent on the document’s content.

In most workflows, either a compromise between options is cho-

sen for all documents or each document is manually processed.

Increased interest in color management has led to more options

that a user may choose between, with a variety of choices that

impact the perceived quality of the reproductions.

Our proposed method automatically selects a color workflow

(output profile and rendering intent) for each input document, dic-

tated by the document’s characteristics and a set of color work-

flow performance tests. The choice of performance tests is specific

to each of the predefined quality attributes. A selection engine

uses these results, weighs them and makes a recommendation on

which workflow to apply. The experimental results indicate that

the selection engine can determine which rendering intent to ap-

ply, but more work is needed in selecting the exact color workflow

when the profiles are of similar quality.

Introduction
Color management is an essential component in the printing

industry to attain precise and repeatable color workflows. The

International Color Consortium (ICC) color profiles are used to

store the necessary information to transform color data between

a device color space and an independent color space [1]. An

ICC output profile includes four different rendering intents (re-

ferred to as B2An) which are used to address the varying repro-

duction goals a user may have [2]. Our work includes two of these

rendering intents, the colorimetric media-relative (B2A1) and the

perceptual (B2A0). The colorimetric intent, aims for as close of

a colorimetric match, with the specified viewing conditions and

device constraints, as possible. The perceptual rendering intent

aims to reproduce pleasing images, a concept that is not clearly

defined[3], but allows the profile creator to be more flexible on

how the colors are mapped between color spaces. Determining

which profile and rendering intent to use is a challenging task

with the vast number of color workflows (profile and rendering

intent) a user must choose between.

Much effort has been made towards creating an adaptive pro-

cessing workflow where the final processing is driven by the input

document’s content [4–6]. Creating a document driven adaptive

selection engine is necessary for our model. Much of the previ-

ous work has used a training set of documents to create rules that

require two inputs: document features and observer preference

ratings. Features have been used in the literature to summarize

differences between documents or to group documents into cate-

gories [7]. Sun [8] described features as a summary of the image

properties that may represent any attribute of an image, for ex-

ample: image gamut, type, histograms, texture or layout . Other

works used the terms statistics, properties, factors, image charac-

teristics and descriptors to describe a document’s properties [4–8].

The motivation of our model is to be able to add and re-

move color workflows easily, which excludes the use of time-

consuming observer data as the preference input. Our model re-

places the user input with a set of performance results derived

from metric tests. Each metric compares the color workflow per-

formance of a specific perceptible Quality Attribute (QA). In our

previous work[9], we summarized a set of key QAs that were used

to summarize the potential performance differences between color

workflows. Our current list includes: colorimetric accuracy, col-

orfulness, gamut boundary, smoothness, details, shadow details,

highlight details and neutrals. The eight QAs are referred to as

QAi, where i = 1, ...,8 the index of each QA.

Our hypothesis is that an observer’s preference between

color workflow options is dependent on two variables: the per-

ceptible differences between the reproductions and the content of

the input document. If we can make a connection between the

content of the document (features) and the differences between

color workflows then we can predict which color workflow to ap-

ply for each new input document.

The rest of the paper is organized as follows. We start by

giving an overview of the proposed method and describe the se-

lection rules in detail. The rules are then used to make a selection

in the next section. Once the selection is made, an observer eval-

uation is used to verify the performance of the selection engine.

We conclude with a summary of results and future work.

Proposed Method
There are two trainings used in our model, trainings 1 and

2, which generate the rules that are used by the selection engine

to choose a color workflow. A training documents set DT is used

with both. Training 1 creates weights that are used to determine

which QAi are most important for the input documents, this step

only considers the document’s features and not the color work-

flows. Training 2 ranks the performances of the color workflows

by finding the differences between a set of target documents DT G

and the output of the processed documents using difference met-

rics.

Figure 1 illustrates the image pipeline for a new document

that needs a color workflow chosen. The document is first con-

verted to a device independent space. Next, a feature vector is

extracted from the document. The extracted features describe the

key characteristics of the new input document. The selection en-

gine uses the rules generated in the trainings to make a decision

on which color workflow to apply.
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Figure 1. The document is transformed to a device independent colorspace,

CIECAM JCh. Next, the document features are extracted and sent to the

selection engine. The selection engine uses the rules from Trainings 1 and 2

and the feature vector to make a decision on which color workflow to apply.

Training 1: Document Characterization
Before starting the steps in training 1, we need to determine

both the document training set DT and the feature list. Figure 2

illustrates the three steps in training 1. First, a document subset

Dsubi
is selected for each QAi. Next, the feature vector is extracted

from the Dsubi
. Then Principal Component Analysis (PCA) is

used to project the training features in a new component space,

where the eigenvalue vectors wQAi, the PCA coefficients cQAi,

and the coordinates of the original features in the new coordi-

nate system FQAsubi
, are stored and used by the selection engine.

These steps are repeated for each QAi.

Figure 2. For each QAi we manually found a subset of documents Dsubi
that

have a specific QAi. The feature vectors are extracted from the Dsubi
. PCA

is used to project the extracted features into a new component space for the

given QAi. The cQAi and the wQAi are stored and used by the selection

engine to determine the importance of the QAi for a new document.

We have a training set of more than 2000 documents DT that

is used to generate the training rules. Most of the DT were down-

loaded from the MIRFLICKR Database1, with the creative com-

mons license from flickr. Additionally, the DT G, used in training

2 are included in the DT document set. From the DT we manu-

ally selected a subset of documents that showed a dominance of

the given QAi, i.e. if the attribute was shadow details we found

100 documents that had a significant amount of dark pixels and

shadow details, see Figure 3. In total, 8 document subsets Dsubi

were created with 100 documents in each.

Figure 3. 8 document subsets Dsubi
were manually selected for each of the

QAi, from the DT , which included both complex documents and targets.

1http://press.liacs.nl/mirflickr/

Figure 4. The DT documents are plotted in the 1st and 2nd component

space. The features in this test were: percentage of pixels out of gamut,

mean chroma, busyness of the chroma channel, and percentage of pixels

not in the 3 neutral 3D color bins (bins 1:3).

As illustrated in Figure 2, the next step in training 1 is to

extract the Dsubi
feature vectors, but first we must determine the

feature list. Our starting set of relevant features included:

• 1D histogram statistics of lightness and chroma: mean, me-

dian, standard deviation, skewness, kurtosis [4],

• 3D color histogram bins [4]: B&W, saturated, dark, light,

• Ratio of out of gamut pixels,

• Hasler[10] and Cui’s[11] colorfulness,

• Spatial Frequency: entropy [12], average local range (MAT-

LAB rangefilt), and busyness[13].

Given the large number of features to consider, reducing the

feature vector dimensions is necessary, a method known as feature

reduction [14] is applied to reduce the feature vector dimensions.

The DT was used to determine the final feature set. We wanted to

separate each Dsubi
from the non subset Dnoni

= DT −Dsubi
. For

each QAi, the features that were able to separate the Dsubi
from

the Dnoni
were included in the final set of features, as illustrated

in Figure 4. Our strategy was an iterative learning, which included

the following steps:

1. For each QAi, include all features that are likely to separate

the Dsubi
documents from the Dnoni

,

2. PCA is used to determine the contribution of each of the

features to the primary components,

3. The DT features are plotted in the new space, if the Dsubi
are

extreme points then this feature is successful, see Figure 4,

4. Features that did not separate the Dsubi
documents or did not

contribute to the principle components were removed[4].

Figure 4 illustrates the features projected in the 1st and 2nd

components of the QA colorfulness space. Features were added

and removed until the colorfulness Dsub were the most extreme

points or had the largest distance from the center of the data set.

A final feature list was determined which included the following

15 features:

• 1D histogram lightness statistics: mean, standard deviation,

median and skewness,
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• 1D histogram chroma statistics: mean and standard devia-

tion,

• 3D histogram color bins: 1 (lightness≤40, chroma≤20 and

all hues), 2 (20<lightness≤70, chroma≤ 20 and all hues), 3

(lightness≥70, chroma≤20 and all hues), sum of the very

saturated bins (20-27: all lightness, chroma≥50 and all

hues) and the medium saturation bins(4-19: all lightness,

20≤chroma<50 and all hues),

• Busyness for lightness and chroma,

• Entropy and local range,

• % of pixels out of gamut.

Figure 5. The 14th and 15th principal components of the neutral Dsub set

and some of the Dnoni
documents are plotted. The neutral Dsub features are

circled, close to the origin. The Dnoni
documents have a varying amount of

neutralness.

The training 1 weights were determined with a PCA classi-

fication approach. For each QAi, we calculated a weight of be-

longing wQAi from the eigenvalue vectors for each Dsubi
. The

Dsubi
features are projected using Matlab’s princomp function.

The function outputs the coefficients cQAi used to transform the

feature vector into the principal component space, the new coor-

dinates of the training features FQAsubi
, and the variance value

that corresponds to each of the 15 (number of features) principal

components λk, where k = 1, ...,15 the index of each principal

component. As k increases, the λk values decrease. For all of our

Dsubi
, the final component variance was very small, illustrated in

Figure 5. Since we are interested in finding the least amount of

variance between the Dsubi
features, our training weighting vec-

tors wQAi are found with:

−−−→

wQAi = 1−
|λk|

|λmax|
, (1)

where λ is the vector variances of the projected features for the

Dsubi
. λmax is the maximum variance or the 1st principal compo-

nent variance and k is the component index.

With this approach, we find the features that cause the least

amount of variance for each Dsubi
. A new document is part of a

group if, when transformed by the cQAi coefficients, we find a

very small value in the last component. If it has a very large value

for the last component then this QAi is not important. Figure 5

illustrates the clustering of the neutral (low saturation) Dsub com-

pared to 10 Dnoni
, which have a varying amount of belonging to

the neutral group (distance from the center of the data set).

Training 2: Color Workflow Assessment

Table 1: There are three different profiles (P1, P2, and P3)

and two rendering intents (perceptual B2A0 and media-relative

B2A1) used in our work, six color workflows in total, for more

details on the profiles see Color Workflow Details 10.

Workflow Name Profile Rendering Intent PCS

P1 B2A0 Océ P1 Perceptual B2A0 CIELAB

P1 B2A1 Océ P1 Media-Relative B2A1 CIELAB

P2 B2A0 Custom P2 Perceptual B2A0 CIE XYZ

P2 B2A1 Custom P2 Media-Relative B2A1 CIE XYZ

P3 B2A0 Onyx P3 Perceptual B2A0 CIELAB

P3 B2A1 Onyx P3 Media-Relative B2A1 CIELAB

In training 2 we compare an original set of documents to

the output of the processed (color workflows applied) reproduc-

tions. For each original document we have j reproductions, where

j = 1, ...,6, for each of the six color workflows. Training 2

uses the same QAi to address the different ways to evaluate a

color workflow’s performance: colorimetric accuracy, colorful-

ness, gamut boundary, smoothness, details, shadow details, high-

light details, and neutrals. The metric differences between the

original and each reproduction are used to compare the perfor-

mances of the color workflows, (see Table 1 and Figure 10 for

details on the six color workflows). For a full description of the

metric tests and target generation see [9].

Figure 6. The results from training 2: the further from the origin the better

the workflow performed. All color workflows were ranked first at least once,

except P3 B2A1. The P2 B2A0 workflow was the most successful with the

most number of attributes: gamut boundary, smoothness and details.

Table 2 reports the results from training 2. Figure 6 illus-

trates the workflows ranked against each other. The scales be-

tween tests are not the same, differences should not be compared

19th Color and Imaging Conference Final Program and Proceedings 207



Table 2: The evaluation results of each QAi. The bold purple values are the workflows that were most successful.

Quality Attribute P1 B2A0 P1 B2A1 P2 B2A0 P2 B2A1 P3 B2A0 P3 B2A1
Colorimetric Accuracy: CIE ∆E*94 (Color Target) 8.26 6.42 8.38 6.48 8.68 8.55
Colorfulness: ∆Cui’s Colorfulness [11] (Color Target) 1.27 0.87 1.37 0.81 1.05 1.14
Gamut Boundary: ∆LCh* STDV[15] (Gradients) 0.66 0.32 0.95 0.78 0.37 0.36

Smoothness: 2nd Derivative[16] (Gradients) 3.12 3.14 2.73 3.03 2.81 2.91
Details: VIF [17] (Complex Documents) 0.77 0.70 0.79 0.74 0.76 0.71
Shadow Details: ∆L*ST DV [9] (Target t ≤ 20) 3.98 0.03 2.67 0.11 3.73 0.04
Highlight Details: ∆L*ST DV (Target ≥ 80) 0.14 0.00 0.05 0.01 0.20 0.01
Neutrals: CIE C*×∆h*[9] (Target CIE ∆L*) 5.00 2.64 2.83 3.09 2.30 2.97

Figure 7. The feature vector of the input document is transformed FQAi

and multiplied by the weights wQAi from training 1, which results in the sQAi.

The sQAi are then applied to the ranked scores from training 2, rQAi, which

gives the color workflow recommendation.

between axes. The profile with the largest area, has been the most

successful with the largest number of attributes.

The results from training 2 illustrate that the color workflows

are competitive and similar in quality. They were all ranked first

for at least one assessment, except P3 B2A1. The largest dif-

ference between color workflows is the rendering intents. For

most of the QAi assessments, either the perceptual (B2A0) work-

flows were successful or the media-relative (B2A1) workflows.

The B2A0 workflows performed better with details and the B2A1

workflows performed better with maintaining the colors. For the

colorimetric accuracy QA, P1 B2A1 was ranked first and P2

B2A1 was a very close second. The P2 B2A1 workflow was

ranked first for the colorfulness attribute. P1 B2A0 was most suc-

cessful with the shadow details, while P3 B2A0 was successful

with the neutrals and highlight details. P2 B2A0 did well with

maintaining the gamut boundary differences, smoothness and the

detail.

The Selection Engine
Figure 7 illustrates the processing pipeline for a new docu-

ment. First the feature vector of the new document is extracted

and inputted to the selection engine. It is transformed into the

component space by the cQAi coefficients calculated in training

1. The new vector FQAi is then element-wise multiplied by the

eigenvalue vector wQAi, which results in the score sQAi:

sQAi =
15

∑
k=1

(|FQA|i,k ⊙wQAi,k), (2)

where sQAi is the significance score of the ith QA for the new doc-

ument. Equation 2 is also used to find the training scores sQAsubi
,

where the projected training features FQAsubi
from training 1 are

used.

Figure 8 illustrates the sQAi percentage for a new set of doc-

uments DV , using the wQAi from training 1. Documents with

sQAi values larger than µ were removed, given

µ = sQAsubi
+(2.58×σ), (3)

where sQAsubi
is the average sQAsubi

and σ is the standard devi-

ation of sQAsubi
. This eliminates QAi that are not present or have

an insignificant presence from impacting the final selection.

We have applied the sQAi to 18 verification documents DV ,

displayed in Figure 8. DV is also used in the observer evalua-

tion test. The face document is the only one with all eight QAi.

The very dark document, bridge, only has one attribute, shadow

details. Many documents have a large amount of the details at-

tribute, shown in blue. Most of DV have between five and six

QAi.The final color workflow is selected by:

S = argmin
j





8

∑
i=1

(

1
−−→

sQA
⊗

−−→

rQAT

)

i, j





, (4)

where S is the index of the selected color workflow and rQA is the

ranking from the metric assessment in training 2. As an example,

if it is determined from the rules in training 1 that a new document

only has 2 sQAi: shadow details (60%) and smoothness (40%).

The engine would choose P3 B2A0, which was ranked second for

both and had the minimum sum of 200, as compared to 260 and

220 for P1 B2A0 and P3 B2A0 respectively. The selection engine

results for the DV are compared to the observer preferences in

Table 3.

Evaluating the Selection Engine
The selection engine was tested against an observer evalua-

tion. All reproductions were printed on the Océ ColorWave 600

wide format printer with the LFM090 uncoated Océ Top Color Pa-

per. For details on the six color workflows, (three profiles, P1, P2,

and P3) and two rendering intents (perceptual B2A0 and media-

relative B2A1), see Table 1. For each of the 18 DV , the six color

reproductions were viewed simultaneously, at a distance of ap-

proximately 24 inches. The DV is entirely different from the DT .

The observers were asked to choose the reproduction that they

most preferred based on overall image quality. The color temper-

ature of the room was approximately 5100K and the illumination

was 560 lux. The 15 observers ranged in age, experience, eth-

nicity and gender. The results of the observer study are shown in

Figure 9.

During the evaluation, the observers informally discussed the

motivation behind their final choice. They were easily able to dis-

tinguish between two groups of documents that corresponded to

the two rendering intents. Once they identified the two groups

they chose one group and discarded the other. From the three re-

maining reproductions, the observers commented on having diffi-

culty choosing just one reproduction and that they did not have a

strong preference.

Table 3 compares the selection engine’s choice to the ob-
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Figure 8. The results of the training 1 weights applied to the DV are illustrated. The color related attributes are in the warmer colors (red, orange and yellow),

smoothness is in green, details are in blue, shadow details in black, highlight details in white and the neutrals are a gradient. Only the face document has all of

the QAi included, most have between five and six attributes. The bridge, jellyfish and blue map have the fewest number of QAi, less than three.

Figure 9. The observer evaluation results are plotted. All color workflows

were most preferred for at least one document, except P1 B2A1. With seven

documents, the observers agreed on their most preferred reproduction. In

general, the observers chose P2 with the more colorful originals: wool balls,

roses, jellyfish, car and blue map. P1 was preferred with documents that had

more shadow details and P3 was preferred with documents that had more

yellows, greens and neutrals.

servers’ choice for the DV , with consideration to each of our eval-

uation aims. An ideal system would always choose the same doc-

ument as the majority of the observers, however there are other

ways to evaluate the selection engine’s performace. We aim to

have our selection engine choose:

1. the same color workflow as the observers,

2. the same rendering intent as the observers,

3. the same color workflow, when the majority of observer’s

agree (> 50%),

4. one of the two most preferred workflows (observers first or

second choice),

5. one of the preferred workflows (> 20%), when the observers

do not have a strong preference (weak obs pref),

6. never select a ’bad’ workflow (observer’s never chose or

least preferred).

The selection engine chose the same rendering intent as the

observers for 89% of the DV , selecting the exact color workflow

Table 3: the results of our evaluation aims show that the Se-

lection Engine (SE) was successful in correctly choosing the

rendering intent with 89% of the DV . The engine chose the

same color workflow as the observers for 33% of the docu-

ments. The selection engine chose either the observer’s first

choice or their second choice with 61% of the documents.
Evaluation SE # Doc Percentage
1.Same color workflow 5 18 33%
2.Same rendering intent 16 18 89%
3.Same when a majority 4 7 61%
4.One of the two most preferred 10 18 56%
5.A preferred (weak obs pref) 7 11 64%
6.Chose bad workflow 0 18 0%

was more challenging. The selection engine chose the same color

workflow as the observers for six documents, 33%. If the ob-

server’s second choice is included, the engine’s success increased

to 61%. When investigating the instances where the observers

showed a strong consensus on their preference (more than 50%),

the selection engine was successful with four out of seven docu-

ments, 57%. There were no occurrences where the engine chose a

workflow that nobody chose or that was least preferred by the ob-

servers. The color workflow performances were competitive, five

of them were most preferred for at least one of the QAi in training

1 and most preferred by the observers, which makes automatically

selecting one more challenging.

The instances where the selection engine did not choose the

same color workflow as the observers, P3 B2A0 was usually in-

volved. The two documents that the selection engine chose P3

B2A0 and the observers did not were fog and bride & groom. The

selection engine chose P3 B2A0 because of details, shadow de-

tails, and largely from the neutrals QA. With the fog document,

the observers chose P1 B2A0 which had a slight red tone. Al-

though, the original was not available to the observers, it was a

grayscale image. The results from training 2 ranked P1 B2A0 the

lowest in the neutrals QA, but the observers preferred the warmer

reproduction.

When the observers chose P3 B2A0 and the selection engine

did not, the documents often had large regions of in-gamut, low to

medium saturation of pink, yellow and green hues (butterfly, face,

woman and theatre). When we compared the color differences
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3 ICC v2 CMYK output profiles were chosen for this work, see Table 1. The profiles in the set were chosen because they were comparable in quality and a

user of this printer would have access to them. Profile, P1, is available for download from Océ’s media guide. P2 was created with an Océ internal tool from

the same measurement data that was used to make P1. The reproductions using Profiles P1 and P2 were all processed through the Océ Power Controller

M+. P3 is commercially available through the ONYX Driver and Profile DownloadManager and developed to be used with Onyx ProductionHouse.

Figure 10. Color Workflow Details

between the original and the reproductions, using the perceptual

intent, P3 was the only profile that changed these in-gamut col-

ors. The dominant colors in these documents had a lower CIE

L* value and their hues shifted counter-clockwise, in the positive

CIE a* direction. As of yet our selection engine does not look at

intentional hue shifts or other types of image enhancements. Our

metrics compare the reproduction to the original. In the future we

would like to consider using color dependent preference metrics,

where there are intentional color shifts. For example, the woman

document is dominated by skin-tones, the observers preferred the

reproduction which darkened her skin and shifted it towards red.

A second consideration on why the selection engine did not

choose P3 B2A0 when the observers did, involves the weighing

of the QAi. P3 B2A0 was often the most colorful of the three

B2A0 workflows, but it was last in maintaining the details. When

the observers were evaluating the workflows, once they chose the

rendering intent, they then looked at the complimentary QAi. If

they chose B2A0 and their decision was primarily based on the

details, they would then look at the colorfulness of the document

or a QAi that the B2A1 performed well with, instead of choosing

the B2A0 workflow with the most details of the three. Following

the observer’s behavior and eliminating workflows in two steps,

first the rendering intent and then make a final decision on which

profile, may improve the selection engine’s performance.

Conclusion and Future Work
We have proposed a novel method of automatically selecting

a color workflow based on the statistical content of the input doc-

ument and a set of rules. Additionally, the decision rules do not

rely on observer data, but rather on a set of metric performance

tests. The workflow assessment and the document characteristic

rules are both created with the same set of quality attributes. The

performance of one workflow may be strong in one area but weak

in another, this allows the document’s properties to dictate which

workflow should be applied.

For a first training, our results are promising. We have suc-

cessfully determined which rendering intent to select. The final

selection between profiles needs to be refined with consideration

to the evaluation aims.

References
[1] International Color Consortium. ICC White Paper 7:

The role of ICC profiles in a colour reproduction system.

23/03/11: www.color.org, Dec 2004.

[2] International Color Consortium. ICC White Paper 9: Com-

mon Color Management Workflows and Rendering Intent

Usage. 23/03/10: www.color.org, Mar 2005.

[3] International Color Consortium. ICC White Paper 2:

Perceptual Rendering Intent Use Case Issues. 23/03/10:

www.color.org, Jan 2005.

[4] Pei-Li Sun and Zhong-Wei Zheng. Selecting appropriate

gamut mapping algorithms based on a combination of image

statistics. In Color Imaging X: Processing, Hardcopy, and

Applications, volume 5667, pages 211–219, San Jose, CA,

January 2005. Proceedings SPIE IS&T.

[5] Todd D. Newman, Timothy L. Kohler, and John S. Haikin.

Dynamic gamut mapping selection, September 2005.

[6] Asaf Golan and Hagit Hel-or. Novel workflow for image-

guided gamut mapping. Journal of Electronic Imaging,

17(3):033004, July-Sep 2008.

[7] Timothée Royer. Influence of image characteristics on im-

age quality. Master’s thesis, Ecole Nationale Des Sciences

Geographiques and Gjøvik University College, France, Nov

2010.

[8] Pei-Li Sun. The Influence of Image Characteristics on

Colour Gamut Mapping for Accurate Reproduction. PhD

thesis, University of Derby, Derby, UK, July 2002.

[9] Kristyn Falkenstern, Nicolas Bonnier, Hans Brettel, Marius

Pedersen, and Françoise Viénot. Using Metrics to Assess
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