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Abstract 
Recent research efforts have focused on combining high 

dynamic range (HDR) imaging with super-resolution (SR) 
reconstruction to enhance both the intensity range and resolution 
of images beyond the apparent limits of the sensors that capture 
them. The processes developed to date start with a set of multiple-
exposure input images with low dynamic range (LDR) and low 
resolution (LR), and require several procedural steps: conversion 
from LDR to HDR, SR reconstruction, and tone mapping. Input 
images captured with irregular exposure steps have an impact on 
the quality of the output images from this process. In this paper, 
we present a simplified framework to replace the separate 
procedures of previous methods that is also robust to different sets 
of input images. The proposed method first calculates weight maps 
to determine the best visible parts of the input images. The weight 
maps are then applied directly to SR reconstruction, and the best 
visible parts for the dark and highlighted areas of each input 
image are preserved without LDR-to-HDR conversion, resulting in 
high dynamic range. A new luminance control factor (LCF) is used 
during SR reconstruction to adjust the luminance of input images 
captured during irregular exposure steps and ensure acceptable 
luminance of the resulting output images. Experimental results 
show that the proposed method produces SR images of HDR 
quality with luminance compensation. 

Introduction 
Many efforts have been made to enhance the image quality of 

digital still cameras by improving the physical performance of 
their image sensors. Even so, digital cameras still suffer from 
limited dynamic range and resolution that is less than that 
encountered in the real world.  

High dynamic range (HDR) imaging algorithms have been 
developed to overcome the problem of underexposed or 
overexposed images caused by the narrow dynamic range of 
cameras. This involves assembling multiple-exposure low dynamic 
range (LDR) images from a normal camera to obtain a full 
dynamic range image [1]. However, HDR imaging techniques 
require that the camera response curve (CRC) for each camera is 
capable of recovering the intensity of an actual scene [2]. 
Additionally, many common displays have a limited dynamic 
range and cannot display HDR images directly; such displays 
require a tone-mapping process to compresses the dynamic range 
of the image to fit their dynamic ranges [2]. Many tone-mapping 
algorithms have been proposed, but each is tailored to a specific 
purpose and thus has its own advantages and disadvantages. Thus, 
the quality of HDR images is not always preserved. 

The limited resolution of normal digital cameras has been 
overcome with SR reconstruction, which increases the spatial 
resolution by exploiting the correlation of several sequential input 
images obtained by the camera under identical conditions. Because 

SR reconstruction requires the use of multiple images with the 
same exposure time, combining it with HDR imaging is difficult 
because the later requires multiple-exposure images. Even so, 
recent studies have addressed the challenge of combining HDR 
images and SR reconstruction to obtain high-quality, high-
resolution images with high dynamic range. Gunturk sought to 
obtain HDR-SR images, proposing a new imaging model during 
SR reconstruction that included dynamic range and spatial domain 
effects [3]. Figure 1 and the following equation describe that 
imaging model: 

 
( )k k k k kf t q v= + +z H w      (1) 

 
where zk is a low-resolution observation for the kth LDR-LR image 
with Y channel from YCbCr values, f(·) is the nonlinear camera 
response function, tk is the exposure time, q is a high-resolution 
input signal, and Hk is the linear mapping that incorporates motion, 
the point spread function, and down-sampling. Although the 
resulting images contain HDR information, presenting them on 
normal displays requires tone mapping, which may not give 
satisfactory results depending on the tone mapping method used. 

Schubert also suggested a framework for combining HDR and 
SR [4]. He used a similar imaging model that included photometric 
camera calibration data obtained using Debevec’s method and tone 
mapping [2]. 

Both methods require estimating the CRC function to obtain 
the dynamic range of the actual scene; however, tone mapping is 
also required and produces results that are not always satisfactory. 
Indeed, estimation of the real-world CRC function is not a simple 
task. Furthermore, each camera requires its own CRC function, 
and tone-mapping algorithms have a very significant influence on 
the quality of the resulting images. 

Here, we propose a new framework for obtaining high-quality 
images that appear to have high dynamic range and super 
resolution. Because it blends multiple-exposure images, the 
framework is robust in the face of input images from irregular 
exposure steps. The proposed method first calculates weight maps,  

 

 
Figure 1. Imaging model by Gunturk. 

which it then applies directly to SR reconstruction with pyramid 
merging [5, 6]. These weight maps are obtained by retaining only 
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the best visible parts in each multiple-exposure input image to 
preserve details of dark and highlighted regions during SR 
reconstruction and produce SR output images that have HDR 
quality without LDR-to-HDR conversion [5]. However, the use of 
weight maps alone does not result in suitable luminance in output 
images because of the set of input images from irregular exposure 
steps. Thus, a new luminance control factor (LCF) is proposed for 
application during SR reconstruction to correct this. The resulting 
images have suitable resolution in both light and dark sections. 

SR reconstruction based on weight maps 
The overall objective of this work was to obtain an SR image 

that has fine details in light and dark sections. Figure 2 is a 
flowchart for the proposed method assuming four input images 
with proper exposure steps. The specific procedure has two parts: 
color reproduction and SR reconstruction from multiple-exposure 
images. During color reproduction, exposure fusion is performed 
on a series of LDR-LR input images to produce a single HDR-LR 
image [5]. Then, only CbCr values are extracted and resized for 
use in the last conversion from YCbCr to digital RGB values. Next, 
SR reconstruction takes place assuming perfect image registration. 
During this process, weight maps are first calculated to determine 
the necessary areas in each input image that contain the “best” 
intensities. These weight maps are then applied to SR 
reconstruction with pyramid merging to prevent intensity 
distortion from unwanted iterations. Simultaneously, LCFs (ηk) are 
applied to each input image to adjust the luminance so that the 
overall luminance of the output image is suitable. 

 
Weight map construction 

The exposure fusion algorithm generates high-quality images 
such as those that result from HDR imaging [5]. That is, the 
resulting images show fine details in dark and lighted areas. This 
algorithm selects the “best” parts of images in a multi-exposure 
image sequence. These “best” parts are defined as a weighted map  

 
Figure 2. Flow of the proposed method. 

based on a combination of quality measures, such as contrast, 
saturation, and good exposure [5], and this map is used to blend 
the input images. 

The contrast measure C is calculated as the absolute value of 
the Laplacian-filtered image for each gray-scaled image. The 
saturation measure S is obtained as the standard deviation within 
the R, G, and B channels at each pixel. The measure of good 
exposure E indicates how well a pixel is exposed, and it is used as 
a weight of the intensity, based on how close it is to 0.5 using a 
Gaussian curve defined as e-(i-0.5)2/2σ2. This is applied to each 
channel. The final weight maps for each kth (k = 1, .., N) image are 
defined as follows: 
 

, , , ,ij k ij k ij k ij kW C S E= × ×      (2) 

 
where i and j are the location of pixels, and k is the index of the 
input sequence images. 
 

 
Figure 3. A set of test input images. 
 

 
Figure 4. Weight maps for each input image. 
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Figure 3 shows a test set of multiple-exposure image 
sequences with RGB channels with Tiff format. Because the 
resulting image is affected by the set of input images, seven 
images were prepared from the auto-exposed image using a Canon 
5D Mark 2 camera with fixed aperture value of 5.0 for use a as 
reference image. 

Figure 4 shows the results of weight maps for each input 
image. Dark and highlighted areas have low values on the weight 
maps; high values indicate the “best” areas of the input images. 
 
Proposed SR reconstruction  

We first assume the imaging model to be the following: 
 

k k kz q v= +H       (3) 
 

where zk, Hk, q, vk, and k are the same from equation (1). If the 
image registration is perfect, then Hk is composed of spatial 
warping, blurring, and down-sampling. In the deterministic 
approach of SR reconstruction, the inverse imaging model can be 
solved by choosing q to minimize the following cost function: 
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where ||∙ || is l2-norm, C is a high-pass filter, and α is a 
regularization parameter. Gradient descent techniques are used 
with the equation above to estimate q. Iterative updates are shown 
for the mth iteration: 
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where ∇ E is a negative gradient calculated as follows: 
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In the proposed method, the weight map is applied to gradient-
descent terms. That is, the gradient descent is performed with 
weight maps to apply the “best” intensity during SR reconstruction. 
Thus, the gradient descent is modified with the weight maps as 
follows: 
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However, as in the case of exposure fusion described above, 

the simple application of weight maps causes seams and contour 
artifacts. In particular, during SR reconstruction, this process also 
induces unstable ∇ E, causing image distortion due to over-
iteration. Thus, Eqs. (7) and (8) can be expressed as 
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Figure 5. Resulting images from the proposed method by using 7 
images. 
 

   
(a)                                              (b) 

 
(c) 

Figure 6. (a) bi-cubic interpolated image from the result of exposure 
fusion, (b) the proposed method using 4 images, (c) the proposed 
method using 7 images. 
 

where G{∙ } and L{∙ } are Gaussian and Laplacian pyramids, 
respectively, and l is the level of pyramid. Here, the SR 
reconstruction is performed for each level of pyramid by 
multiplying by the weight maps for each input image. The final 
resulting image is reconstructed using the inverse Laplacian 
pyramid after SR reconstruction for each level. 

Figure 5 is the image obtained using the proposed method. 
The dark and highlighted areas are well represented. However, 
evaluation of the proposed method is difficult because reference 
images exist. Figure 6 compares our resulting images by using 
different sets of input images in Figures 6(b) and 6(c) with the bi-
cubic interpolated image from the exposure fusion algorithm in 
Figure 6(a). Although the images in Figures 6(b) and 6(c) have 
better resolution, the overall luminance in Figure 6(b) is poorer 
than in either Figure 6(a) or 6(c). That is, the quality of resulting 
images depends on the set of input images. 

Luminance compensation  
The resized image resulting from exposure fusion in 

Figure 6(a) is not suitable for experimental comparison because it 
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was produced using a totally different process. Here, we suggest a 
base image for evaluation, then introduce the new LCF to adjust 
the luminance of the resulting image depending on the set of input 
images. 

Images resulting from different sets of input images were 
analyzed to determine the base image. Test sets are distinguished 
according to the composition of different exposure steps. Here, we 
assume the reference image for SR reconstruction is obtained with 
auto exposure (+0), because normal still cameras usually capture 
photos using auto exposure. Then, images were obtained in four 
exposure steps, the intervals of which were decided empirically. 

Figure 7(a) is reconstructed from seven input images with 
exposures of –12, –8, –4, +0, 4, 8, and 12 while for Figures 7(b) 
and 7(c), the number of input images is decreased by one level of 
exposure interval. The resulting image in Figure 7(a) looks better 
than the other images, which use input images with closer 
exposure steps, as in LDR images; these poorer images do not 
have enough information in the dark and highlighted areas. Our 
experimental results show that using more than seven images does 
not improve the quality. Additionally, the image in Figure 6(c) has 
HDR quality that is similar to that obtained with exposure fusion. 
The other test set produced almost the same result using seven 
images with exposures of –12, –8, –4, +0, 4, 8, and 12 as the base 
image. 

A new LCF ηk is introduced to adjust the luminance of the 
image resulting from an irregular set of input images, such as those 
shown in Figures 7(b) and 7(c). That is, the LCF makes the images 
in Figures 7(b) and 7(c) similar to that of 7(a). This LCF is applied 
to the input images to adjust their overall luminance, making low-
exposure areas darker and high-exposure areas lighter. This is 
required because the proposed method requires input images with 
a large exposure interval. Different LCFs should be applied to each 
input image because the luminances of the input images are not the 
same. Thus, we modified Eq. (9) to include the LCF as follows:  
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where ηk is the LCF for each input image.  
Indeed, if the set of input images has enough information for 

dark and highlighted areas from the reference image, the resulting 
images appear similar to the base image, as shown in Figure 8. The 
images in Figures 8(b) and 8(c) were reconstructed with a set of 
three and five input images, respectively, which include the 
requisite +12 and –12 exposure steps. The appearance and average 
luminance of all three resulting images in Figure 8 are almost the 
same. Thus, the set of input images should include enough dark 
and light images with proper exposure steps, defined here as 
+target and –target exposure steps. 

If we assume that the +target and –target exposure steps can 
be determined ahead of time, it is possible to make ηk a function to 
adjust the average luminance of the input images. That is, the role 
of ηk is to ensure that the average luminance of input images 
farthest from the reference image is as close to +target and –target 
exposure steps as possible. 

Determining ηk as a function requires first determining the 
+target and –target exposure steps for sufficiently dark and light 
images. In experimental simulation, +12 and –12 steps from the  

  
(a)                                                      (b) 

 

 
(c) 

Figure 7. (a) 7 images with -12, -8, -4, +0, +4, +8, and +12 exposure 
steps, (b) 5 images with  -8, -4, +0, +4, and +8 exposure steps, (c) 3 
images with  -4, +0, and +4 exposure steps. 
 

   
(a)                                                  (b) 

 

 
(c) 

Figure 8. (a) 5 images with -12,  -4, 0, +4, and +12 exposure steps, (b) 
5 images with  -12, -8, +0, +8, and +12 exposure steps, (c) 3 images 
with   -12, +0, and +12 exposure steps. 
  

 
Figure 9. Average luminance for each test images according to the 
exposure steps. 
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reference (+0) were appropriate targets because more distant steps 
did not have any geometrical information. Determination of these 
target exposure steps is a subject for future study. 

The average luminance values according to the exposure 
steps were investigated (Fig. 9) to determine the specific value of 
ηk. For each test image, even though the absolute average values 
were different, the percentage change for the corresponding 
exposure steps was almost the same. A similar concept applies 
during 
construction of a camera response function. That is, the ratio 
between exposure times is the same as that between radiances [1]: 
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where I is the radiance, t is the exposure time, p is a pixel, and q is 
the sequence of input images. 

Consequently, ηk is the ratio between the current and the 
target average luminance values: 
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where L is the average luminance, i is the exposure step, and k is 
the sequence of input images. 

 

 
(a) 

   
(b)                                               (c) 

   
(d)                                             (e) 

Figure 10. Resulting images by adopting �k.(a) using 7 images (b) 
using 5 images without �k, (c) using 5 images with �k, (d) using 3 
images without �k, and (e) using 3 images with �k 

 

  
(a)                                                 (b) 

Figure 11. Color image version from figure 10(c) and (e). 
 

Experimental results 
Figure 10 shows the images produced using ηk along with 

gray images for comparison of the luminance only. The resulting 
images with ηk in Figures 10(c) and 10(d) appear similar to the 
image in Figure 7(a). However, the color versions of Figures 10(c) 
and 10(e) in Figure 11 are clearly darker due to low saturation 
because the input images had already lost their color information. 
Color compensation is another area of future research. 

The last comparison is performed with other methods. 
Narasimhan as method_1 suggested a HDR-SR image by 
sequential performance of HDR imaging, SR reconstruction, then 
tone mapping[7]. Hardie as method_2 also has the similar results 
with SR reconstruction, HDR imaging, and tone mapping 
algorithms[8]. Their results are shown in figure 12, presenting 
almost the same, because the same conversion algorithms are used 
during their process. However they are quite different from our  

 

  
(a)                                                  (b) 

 
(c) 

Figure 12. Resulting images from other method. (a)method_1, and (b) 
method_2, and (b) proposed method. 

 

  
 

Figure 13. Subjective evaluation with other methods. 
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results because we don’t use any conversion. As follows objective 
evaluation such as PSNR and SSIM is difficult. Finally, subjective 
evaluations are performed with 5 resulting images, and results are 
shown in figure 13. 

Conclusions and discussions 
We have proposed a simplified method for generating SR 

images using multiple-exposure images to obtain HDR 
information about dark and light areas. The use of weight maps 
permits the elimination of HDR conversion using the CRC 
function and LDR conversion using tone-mapping algorithms, both 
of which can affect the quality of the resulting image. The 
dynamic range is extended by determining the best visible areas 
from the weight maps. Use of the LCF function also makes 
preservation of suitable luminance of the resulting images possible 
based on different sets of input images. 
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