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Abstract
Color appearance models and tone reproduction algorithms

are currently solving different problems. These classes of al-
gorithms are also developed and used in different communities.
However, they show remarkable functional similarities. Perhaps
there is reason to think that they could in fact be one and the same
thing. The advantages would be that we could achieve dynamic
range reduction while taking human color vision into account.
Vice-versa, we could predict the appearance of color over a large
range of intensities. But how to overcome the differences, and how
to construct an algorithm that could be both a tone reproduction
model as well as a color appearance model?

Introduction
An imaging pipeline consists of processes to capture, store,

transmit and display images and video. Traditional imaging
pipelines are designed around the abilities of conventional capture
and display devices, and therefore do not need dynamic range be-
yond what can be represented with a single byte per color chan-
nel. This situation is changing as image capture and in particu-
lar display technologies are maturing to include higher dynamic
ranges [1]. High dynamic range imaging technologies produce
and manipulate pixel data that conceptually consist of floating
point numbers instead of 8-bit integer formats [2].

The benefit is clear: capturing data at full fidelity will lead to
better imagery, even if the display device is not capable of repro-
ducing the full dynamic range. An example is shown in Figure 1,
where a single 8-bit exposure of a scene is compared with a high
dynamic range (HDR) capture of the same scene. The resulting
high dynamic range image was tonemapped to fit the reproduc-
tion range of paper. Note that the exposure on the left has both
under- and over-exposed areas. This is not uncommon and there-
fore a good example of the utility of high dynamic range imaging
technologies.

While representing pixels as floating point numbers rather
than bytes may seem a minor change, there are many perceptual
as well as technological aspects that require a reassessment. On
the technological side, there are still many challenges. Perhaps
the main one is that HDR image and video capture devices gen-
erate an enormous amount of data that would have to be man-
aged. Standard compression algorithms are not directly amenable
to HDR data [4, 5, 6, 7], with the implication that broadcast stan-
dards have yet to emerge.

Second, HDR movie cameras are only just becoming avail-
able, including the Red Epic1 and the camera by Contrast Optical
Engineering [8].

Third, it is not entirely clear how much dynamic range

1http://www.red.com/

Figure 1. This scene was captured with a single exposure (left) and high

dynamic range imaging technologies (right). The image on the right was

tonemapped for display/print using the photographic tone reproduction oper-

ator [3]. Photograph courtesy of Tania Pouli.

should be captured. While the range of illumination between
starlight and bright sunlight over which the human visual sys-
tem can adapt is around 10 orders of magnitude [9], it seems
overkill to try and capture this full range at all times. The hu-
man visual system is able to simultaneously perceive around 4
orders of magnitude of illumination under a specific laboratory
set-up [10], although in practice this number may be a bit higher.
It would probably be good practice to design imaging pipelines
around this number.

If it is assumed that HDR imagery and video will be captured
with such a dynamic range, then displays should match this capa-
bility as well. Currently, only very few displays currently come
even close, the Dolby prototype displays [1] and their commer-
cial derivatives by SIM22 being the exception. Print technology
is inherently incapable of reaching such dynamic range due to its
reflective nature. Nonetheless, it may be foreseen that display de-
vices will soon exhibit a greater variety in dynamic range than
currently available.

Whether low dynamic range legacy content or high dynamic
range data is sent to a display, it will need to be mapped into a
format that can be handled by that given display. In particular, it
will need to be tonemapped to fit the dynamic range of the display
device, and should take into consideration the state of adaptation
of the observers.

In recent years, much progress has been achieved in the de-
sign of algorithms that map high dynamic range images to low
dynamic range display devices [2, 6]. Moreover, these algorithms
have been subjected to psychophysical evaluation such as prefer-
ence ratings [11, 12, 13] and similarity ratings [14, 13, 15, 16].

Although several tone reproduction operators are capable
at compressing dynamic range, in this paper we argue that one
weakness that persists is the lack of sensible color manage-
ment. In particular, it is well-known that there exist luminance-
induced appearance phenomena such as the Hunt and Stevens ef-

2http://www.sim2.com/
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fects, the Helmholz-Kohrausch effect and the Bezold-Brücke hue
shift [17, 18] which indicate that there is a complex relationship
between the perception of color and the luminance level at which
colors are perceived. Currently, these effects are not generally
taken into consideration in tone reproduction operators, leading
to images that generally look either too vivid or too dull, and are
certainly unsuitable for accurate color reproduction.

On the other hand, color appearance modelling is an active
area of research that has led to several models that predict the per-
ception of color under different illumination conditions [17]. With
the tristimulus values of a patch of color given, as well as a de-
scription of the environment in which it is observed, such models
predict the perception of color in terms of appearance correlates,
which include lightness, brightness, hue, saturation, colorfulness
and chroma [19, 17, 18].

Few color appearance models are designed with high dy-
namic range imaging in mind, although notable exceptions ex-
ist [20, 21, 22, 23]. In particular, the models proposed by Kim et
al. [22] are based on a psychophysical dataset that spans a much
higher dynamic range than the psychophysical dataset that lies at
the heart of most color appearance models [24].

The purpose of this paper is to argue that although tone re-
production and color appearance modelling may be addressing
different problems, their aims partially overlap. Moreover, their
functional similarity is unmistakable, albeit also with significant
differences. This is especially the case for tone reproduction op-
erators that model aspects of human vision.

This paper catalogs the similarities and differences in order
to show where the opportunities lie to construct a combined tone
reproduction and color appearance model that could serve as the
basis for predictive color management under a wide range of il-
lumination conditions. It is thought that such an algorithm would
benefit both fields of high dynamic range imaging as well as color
imaging.

To this end, the remainder of the paper begins by briefly de-
scribing the aforementioned luminance-induced appearance phe-
nomena. Then, the structure of tone reproduction operators is
outlined, insofar based on neurophysiology. These models are
functionally closest to color appearance models, which are dis-
cussed next. A discussion of attempts to bring tone reproduction
and color appearance modelling closer together then precedes the
conclusions.

Luminance Induced Appearance Phenomena
The overall amount of light under which colors are observed

may change the appearance of these colors. For instance, on a
bright sunny day colors tend to appear more colorful than on an
overcast day [18]. Several different observations have been made
that relate to the relationship between illumination and color ap-
pearance.

First, the Hunt effect states that as the luminance of a given
color increases, so does its perceived colorfulness [25]. Further,
perceived brightness contrast also changes with luminance, which
is known as the Stevens effect [26]. Brightness itself is not only
a function of luminance, but also depends on the saturation of the
stimulus. This is described by the Helmholtz-Kohlrausch effect,
although this effect depends on hue angle as well [27]. Finally,
the perception of the hue of monochromatic light sources depends
on luminance level, which is described by the Bezold-Brücke hue

Figure 2. The image on the left was tonemapped with the photographic op-

erator [3], which compresses the luminance channel of the Y xy color space. It

therefore does not take luminance induced appearance phenomena into ac-

count. The image on the right was tonemapped using the color appearance

model by Kim et al. [22].
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Figure 3. A recent model of photoreceptor behavior (after [28]).

shift [17].

The implication for high dynamic range imaging algorithms,
and in particular tone reproduction, is that if an image of a scene
is displayed at much lower luminance levels than were present
in the scene itself, a tone reproduction operator should take these
effects into account to ensure that the image is perceived in the
same way as the original scene, despite the differences in lumi-
nance levels. An example demonstrating the difference between
tone reproduction with and without color management is given in
Figure 2.

Neurophysiology-Based Tone Reproduction
A good number of tone reproduction operators resemble

parts of human neurophysiology, and in particular the behavior of
photoreceptors. The flow chart of a recent model of photoreceptor
behavior is given in Figure 3 [28]. This is an accurate temporal
model that takes adaptation into account. However, if its temporal
components are integrated out, it results in a steady-state model
which can be accurately modelled by the Naka-Rushton equation,
which was originally used to model the response function of a
certain species of fish:

V =
Ln

Ln +σn (1)
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Figure 4. The Naka-Rushton equation plotted for different semi-saturation

constants (0.1, 1 and 10). Note that around the inflection point, the response

is approximately logarithmic as shown by the straight line.

Here, V is the photoreceptor response as a result of being exposed
to a luminance of L. This function is plotted in Figure 4, show-
ing that on a log-linear scale this response is sigmoidal, having
a single inflection point. The constant σ is known as the semi-
saturation constant, which is the value of L that produces an out-
put of 0.5. The constant n determines the steepness of the function
around the inflection point, and often ranges somewhere between
0.5 and 1.0 (n = 0.76 for the above model).

The Naka-Rushton equation and variants thereof are used in
several tone reproduction operators [29, 30, 31, 32, 3, 33, 34],
where the function is applied to all pixels identically. Thus, a
display value Ld is calculated to be identical to the photorecep-
tor response V . The value of the semi-saturation constant can be
computed from the average pixel luminance [33]. Of course there
are many other ways to compress an image for display [2], al-
though sigmoidal compression tends to be used often as it gives
plausible results while being computationally inexpensive.

However, there exists one main problem with this approach,
which is that most operators work on a single luminance channel,
reconstructing a color image after compression. This does not
take into account any form of color appearance, leading at best to
a single ad-hoc parameter that can be user-adjusted, as discussed
next.

Color Reconstruction
For algorithms that compress the luminance channel, the

process of reconstructing a color image typically involves the ex-
traction of a single luminance channel L from a color image (R,
G, B), usually computed as a weighted average of the red, green,
and blue inputs using L = 0.2126R+ 0.7152G+ 0.0722B. The
luminance values L are then compressed or expanded into display
values Ld using one of the many algorithms available, followed
by reconstitution into a new color image (Rd ,Gd ,Bd). The latter is
achieved by calculating [29]:

Rd = Ld

(

R
L

)e

(2a)

Gd = Ld

(

G
L

)e

(2b)

Bd = Ld

(

B
L

)e

(2c)

The user-specified parameter e ∈ [0,1] controls the amount of
saturation in the display image. Values around the e = 0.6 mark

e=0.00 e=0.75e=0.50e=0.25 e=1.00

Figure 5. After tonemapping the luminance channel of these images with

Drago’s tone reproduction operator [35], color images were reconstructed

using Equation (2) for different values of e.

e=0.00 e=0.75e=0.50e=0.25 e=1.00

Figure 6. Color processing using Equation (3). The parameters are other-

wise identical to those used for Figure 5.

usually offer a reasonable trade-off between under- and over-
saturation. Example results of this procedure are shown in Fig-
ure 5. As shown here, in particular images with a strong color
cast benefit from setting this exponent to values lower than 1.0.

An alternative function also controls saturation with an ex-
plicit parameter. In this linear formation, luminance is claimed to
be affected less by the value of e [36]:

Rd = Ld

((

R
L
−1

)

e+1

)

(3a)

Gd = Ld

((

G
L
−1

)

e+1

)

(3b)

Bd = Ld

((

B
L
−1

)

e+1

)

(3c)

An example of this approach is shown in Figure 6. Note that for
smaller values of e especially the images in the bottom row show
a marked hue shift from orange to pink.

Based on psychophysics, it was found that the parameter e
in this formulation can be linked to a contrast compression factor,
which indicates by how much the contrast was reduced as a result
of applying a tone reproduction operator. It was found that the
relation between contrast compression factor and parameter e is
sigmoidal [36].
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Figure 7. The output of the combined chromatic adaptation and non-linear

response compression step of [42] plotted against a set of corresponding

color datasets for each of the S, M and L color channels.

Nonetheless, these approaches are ad-hoc and used only to
create images that are visually pleasing. Notably, it ignores the
interrelation that exists between light levels and the perception of
color. It also ignores issues related to chromatic adaptation which
would have to be addressed if the image depicts a scene with a
different dominant light source from the environment in which
the image is observed. Thus, this level of color management is
too simple and tone reproduction operators would benefit from
more advanced and integrated color management. Nonetheless,
in tone reproduction saturation adjustment is still the norm rather
than the exception.

Color Appearance Modelling
Color appearance models are designed from the ground up

to account for differences in viewing environment. They can
be used to predict appearance correlates, but they can also be
used to transform a patch of color to account for differences in
viewing environment [17, 37, 18]. Most color appearance mod-
els consist of three separate steps. First, a chromatic adapta-
tion transform is computed. Second, a non-linear response com-
pression is executed. Finally, appearance correlates are com-
puted based on the output of the response compression step. The
most common color appearance models are CIECAM97 [38] and
CIECAM02 [39], with the latter currently being widely adopted
as the industry standard. For imaging systems, CIECAM02 has
been extended to work with images rather than uniformly colored
patches [20, 21, 40].

The chromatic adaptation transform is usually executed in a
sharpened cone response space, followed by non-linear response
compression which operates in the Hunt-Pointer-Estevez color
space [37], modelling the responses of the three cone types. Cru-
cially, in color appearance models the non-linear response com-
pression is executed in each channel independently, albeit that the
semi-saturation constant has the same value across all three chan-
nels.

As chromatic adaptation and response compression are
working in different color spaces, we note that the combined re-
sult does not adhere to the von Kries hypothesis, which states
that photoreceptor types work independently of each other [41].
Despite this, the chromatic adaptation transform employed in
CIECAM02 matches corresponding color datasets well.

Trend 1: Chromatic Adaptation
Based on experiments with color management in tone repro-

duction [34], a novel color appearance model was recently out-
lined that combines chromatic adaptation and non-linear response

compression into a single step, operating in the Hunt-Pointer-
Estevez color space [42]. The key innovation of this model is
that the chromatic adaptation transform is incorporated in a per-
channel semi-saturation constant, i.e. this constant is different for
each channel and is specified according to the tristimulus value of
the white point. This approach maintains channel independence,
and is therefore a true von Kries model. Moreover, it matches
corresponding color datasets equally well (the overall RMS er-
ror is 28.31 for this model and 28.57 for CIECAM02). Figure 7
shows the results of comparing the model’s output against 6 cor-
responding color datasets [43, 44, 45, 46, 47, 48], as well as
CIECAM02 [39], confirming the model’s predictive power. Com-
bining chromatic adaptation and non-linear response compression
is an important step towards unifying tone reproduction and color
appearance models, as it makes the two functionally more alike.

Trend 2: HDR Color Spaces
A further trend towards high dynamic range color imaging

is afforded by the emergence of HDR-specific color spaces. In
particular, recently the CIELAB and IPT color spaces, which
both contain a compressive power function, were successfully
amended to have sigmoidal compressive functions [49]. Their
predictive power with respect to Munsell renotation data is simi-
lar to the conventional CIELAB and IPT spaces [50], but the non-
linearity now matches those of color appearance models, tone re-
production operators, and importantly the photoreceptor response
of the human visual system.

Trend 3: HDR Color Appearance Data and
Models

To allow CIECAM02 to work on images rather than sin-
gle colored patches, it was amended to spatially varying models,
named iCAM and iCAM06 [20, 21, 40]. These models include
local adaptation processes, in that a pixel’s local neighborhood is
taken to affect the perception of the pixel itself, thereby borrowing
from spatially varying tone reproduction operators.

Recently, new data has become available to test color appear-
ance models over an extended range of illumination [22]. The ex-
periments underlying this data follow the same paradigm as that
used to acquire the LUTCHI dataset [24], albeit that an HDR dis-
play and transparencies were used to extend the range of illumina-
tion conditions. A color appearance model fitting this new dataset
was also proposed [22]. Functionally it follows existing color ap-
pearance models, although importantly it uses Equation (1) di-
rectly for its non-linear compression step. This is a simpler for-
mulation than used in CIECAM02, although chromatic adaptation
is still implemented as a separate preprocess. The model has been
extended to account for the effect that edge sharpness has on the
perception of colored patches [23].

Discussion
The reason that color appearance models are not yet viable

tone reproduction operators is related to the manner in which they
convert patches of color between viewing environments. As ar-
gued previously [51], color appearance models are run in forward
and backward direction to achieve such conversion (Figure 8). In
forward mode, the scene’s viewing parameters are inserted, and in
backward mode the target viewing environment’s parameters are
inserted. This works well if these two environments do not differ
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Figure 8. A flow chart outlining typical processing paths for tone map-

ping operators (TMO) and color appearance models (CAM). The input is (a)

is passed through the model using scene referred parameters. Many tone

reproduction operators display the output directly (b), although the values

represent photoreceptor output. CAMs operate the model in reverse using

display referred parameters, resulting in displayable luminance values (c).

much in overall illumination levels.
However, if there is a significant discrepancy between view-

ing environments, then compression will not be sufficient to pro-
duce a viable result. The reason is that dynamic range compres-
sion comes from the sigmoidal response function. Running this
step in reverse largely undoes any compression, and is in fact
functionally equivalent to gamma correction [51]. Unfortunately
this means that color appearance models are not suitable as dy-
namic range reduction algorithms. Image appearance models mit-
igate this problem to some extent by applying spatially varying
filters.

On the other hand, tone reproduction operators often omit the
reverse step, and are therefore theoretically incorrect, causing the
display to emit luminances that represent photoreceptor output.
This means that there remains a gap between color appearance
models and tone reproduction operators, each solving somewhat
different problems: tone reproduction offers dynamic range re-
duction, while color appearance models offer accurate color man-
agement.

This problem can be solved to some extent by running a
color/image appearance model on a high dynamic range image,
then resetting the luminance channel to retain only chromatic ad-
justments and compressing the image by means of a tonemap-
ping operator that only compresses the luminance channel [52].
Nonetheless, this is regarded as a workable intermediate solution
in the absence of a more principled approach.
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