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Abstract 

Logvinenko’s color atlas theory provides a structure in which 
a complete set of color-equivalent material and illumination pairs 
can be generated to match any given input RGB color. In 
chromaticity space, the set of such pairs forms a 2-dimensional 
manifold embedded in a 4-dimensional space. For single-
illuminant scenes, the illumination for different input RGB values 
must be contained in all the corresponding manifolds. The 
proposed illumination-estimation method estimates the scene 
illumination based on calculating the intersection of the illuminant 
components of the respective manifolds through a Hough-like 
voting process. Overall, the performance on the two datasets for 
which camera sensitivity functions are available is comparable to 
existing methods. The advantage of the formulating the 
illumination-estimation in terms of manifold intersection is that it 
expresses the constraints provided by each available RGB 
measurement within a sound theoretical foundation.  

Introduction  
Logvinenko’s color atlas [1] provides a way to enumerate a 

complete and unique set of color-equivalent stimuli (material 
reflectance and illuminant spectral pairs that are indistinguishable) 
for all possible RGB tristimulus values [2]. Specifically, it 
provides a mechanism by which we can generate a unique set of 
illuminant and material spectra that completely covers the entire 
color space without any redundancy. In his theory, both the 
material reflectance and illuminant spectra are each specified by 3 
parameters, so a color-equivalent stimulus is specified by 6 
parameters.  For a given tristimulus value, the set of color-
equivalent stimuli defines a 3-dimensional manifold, which he 
terms the material-lighting-invariance manifold.  

Using this theoretical structure, we propose an illumination-
estimation method.  For an image of a scene under a single 
illuminant, two different RGBs from two different pixels define 
two different material-lighting-invariance manifolds. By 
assumption they have at least the single scene illuminant in 
common. To find the common illuminants, the material-lighting-
invariance manifold is projected onto the 2D illuminant space. The 
common illuminants must lie within the intersection of the 
projected manifolds. However, the intersection is not, in general, a 
single value, but rather a set of values. Intersecting the sets of 
illuminants defined by the RGBs from other pixels further 
constrains the range of possible scene illuminants. Tests with real 
images show that the method’s performance is comparable to that 
of other well-known methods. An advantage of the proposed 
method is that it is founded on the theoretical principles of the 
color atlas and exploits precisely the theoretical constraints the 
atlas provides. 

Many strategies have been proposed for estimating the 
chromaticity of the scene illumination. The present approach has 
similarities to Forsyth’s gamut mapping method [4] and the voting 

methods (Color by Correlation [5] and Sapiro’s Illuminant Voting 
[6]).  It relates to gamut mapping in that it represents a set of 
constraints and derives information from their intersection. It 
relates to Color by Correlation and Illuminant Voting in that the 
intersection is implemented via voting for candidate illuminants. 

Background 
The camera or eye’s response to light with the spectral power 

distribution P(λ) light reflected from a Lambertian non-specular 
surface material with reflectance S(λ) is modeled in the standard 
way as the triplet φi (i=1, 2, 3):  
 

ϕi = P(λ)S(λ)Ri (λ)dλ
λmin

λmax

∫ i =1, 2,3
   

(1) 

 
where Ri(λ) is the spectral sensitivity function of a sensor class.  

 
Logvinenko [2] defines a light-color atlas Ap as a subset of 

light spectral functions (strictly positive ones) such that given any 
color stimulus (object material reflectance x illuminated by a given 
light) there is a unique element p in the light-color atlas such that, 
illuminating x by p, this element results in a metameric match to 
the given color stimulus. There is a similar definition for the 
object-color atlas Ax.  An object-color atlas is defined as a set of 
object material functions Ax such that for each color stimulus there 
is a unique element in Ax such that, if illuminated with the same 
light, this element results in a metameric match to the given color 
stimulus.  

Logvinenko further defines a general color atlas in terms of an 
object-color atlas Ax and a light-color atlas Ap. The color atlas A is 
such that for any object illuminated by any light, there is a unique 
element p from Ap and a unique element x from Ax that is color-
equivalent to the input pair. Color equivalence means being 
indistinguishable in multiple-illuminant scenes; however, in the 
special case of single-illuminant scenes it corresponds to 
metamerism [2]. For an arbitrary color stimulus (x’, p’) therefore 
there is a unique pair (x, p) in the color atlas that is color 
equivalent to it. By virtue of the definition of a color atlas, there 
will be a one-to-one map between any two atlases. The set of all 
color-equivalent object/light pairs is called the object-color set. 
Logvinenko refers to the object-color set along with the set of 
coordinates systems defined by the family of color atlases as the 
object-color manifold.  

For any given color stimulus (x, p) its coordinates in the 
general color atlas can be determined by 2-step color matching [2]. 
Step 1 is to find the unique element am from the object-color atlas 
such that 
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φi(x, p) = φi(am, p)    i=1,2,3   (2) 

Step 2 is then to find the unique element al from the light-
color atlas such that 

  
φi(am, p)= φi(am, al)   i=1,2,3   (3) 
 

Since the object-color atlas and the light-color atlas are each 
3-dimensional, the resulting coordinates of the general color atlas 
are 6-dimensional.  

The object reflectances and light spectra of the color atlases 
can be represented in terms of rectangular functions [2] that are a 
mixture of uniform gray and a rectangular component that takes 
only values 0 and 1, with at most 2 transitions between 0 and 1. An 
algorithm for computing these functions from CIE XYZ is 
described by Godau et al. [3]. These rectangular functions are very 
unlike typical reflectance and illuminant spectral functions and 
hence are not very suitable for our purposes. However, 
Logvinenko also proposes other parameterizations of the color 
atlas, one of which is based on a Gaussian representation of 
spectra. The Gaussian representation is given in terms of a 3-
parameter set of spectral reflectance functions gm(λ;km,σm,μm) and 
a similar 3-parameter set of spectral power distribution functions 
gl(λ;kl,σl,μl), both of which are Gaussian-like (see equations 19-
26 of [2]) functions, where k, σ, and μ indicate the height, standard 
deviation and center (peak) of the Gaussian.  The functions are not 
strictly Gaussians in that they wraparound from one end of the 
visual spectrum to the other. They also differ from the inverse 
Gaussians used by Macleod et al. [7].  

Any given sensor response triplet φi  (i=1,2,3) can be 
decomposed into a sextuplet (km,σm,μm,kl,σl,μl) representing a 
Gaussian-like material reflectance lit by a Gaussian-like illuminant 
such that  

gl (λ;k,σ l ,ml )gm (λ;k,σ m ,mm )Ri(λ)dλ = ϕ i i =1,2,3
λm in

λm ax

∫
  

(4) 

An example of this kind of 3-parameter Gaussian metamer spectra 
and a rectangular metamer for a sample Munsell chip’s spectral 
reflectance is shown in Figure 1.  

This decomposition is not unique; however, each choice of 
illuminant uniquely defines a corresponding material and vice-
versa. For a given sensor response triplet, the set of all such 
illuminant-material pairs defines a 3-dimensional manifold 
embedded in a 6-dimensional space.  

Illumination-estimation generally means estimating only the 
chromaticity of the illuminant, since for color balancing the 
intensity of the illuminant does not matter. In the present case, 
disregarding the intensity of the illumination and any uniform 
scaling of the percent surface spectral reflectance function reduces 
the number of parameters from six to four (σm,μm,σl,μl). We 
defining chromaticity in the standard way as τi=�i/(�1+�2+�3) 
(i=1,2) then similar to (4), any sensor chromaticity can be 
decomposed as 

 
Figure 1. A sample Munsell chip’s spectral reflectance illuminated by D65 and 
its rectangular and Gaussian metamers shown by dashed, dotted and solid 
lines respectively.  

gl (λ;1,σ l ,ml )gm (λ;1,σ m ,mm )Ri(λ)dλ = nτ i i =1,2
λm in

λm ax

∫
  

(5) 

where n is an arbitrary multiplier. The resulting parameters lie on a 
2-dimensional manifold embedded in a 4-dimensional space. 
Figure 2 shows two examples of the manifolds defined by different 
input sensor chromaticity values. 

Proposed  Intersection Method 
 Given an RGB image of a single-illuminant scene, each 

distinct RGB value implies a manifold of illuminant-material pairs. 
Two different RGBs taken from the same single-illuminant image 
will define two different manifolds. For each RGB the set of 
possible illuminants consistent with it is represented by the 
illuminant components of the 4D manifold, so projection of the 
manifold onto the illumination axes results in the possible 
illuminants consistent with the given RGB. The illuminants 
consistent with two RGBs lie in the intersection of their 
projections.  Each additional RGB will further limit the common 
intersection. To determine the overall scene illuminant, every 
distinct RGB from the image is used to limit the set of potential 
illuminant candidates as much as possible.  

To compute the intersections, we use a Hough-transform-like 
approach. At first it might seem that the (σm,μm,σl,μl) space would 
require a 4-dimensional Hough accumulator array, however, since 
we are only interested in the illuminant, a 2-dimensional array will 
suffice. The illuminant space is discretized and a 2-dimensional 
accumulator array is used. Given an image RGB, each 
(σm,μm,σl,μl) point on the manifold defined by it increments the 
corresponding accumulator array cell (σl,μl) by a single vote. Once 
all the image’s distinct RGBs have been processed, the 
accumulator array cell with the most votes determines the scene 
illuminant. If there is not a unique maximum, the illuminant 
estimates are averaged. 
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Figure 2. Plots of the 2-dimensional material-illuminant manifold embedded in the 4-dimensional space of μl,σl,μm,σm for two different input chromaticity values. 
Axes are Mu-l, S-l, Mu-m, S-m for μl, σl, μm, σm, respectively. Three of the dimensions (i.e., μl,σl,μm) are represented by the axes. Note that the fourth 
dimension, σm, is not represented. Left and right panels illustrate the manifold for chromaticity values of (.53 .13) and (.66 .13) based on the SONY DXC-930 
sensor sensitivity functions, respectively.  

 
Implementation Details 

The advantage of the light-color and object-color atlases is 
that they provide a means by which we can enumerate a unique set 
of illuminant and material spectra that completely covers the entire 
color space without any redundancy. In particular, we can 
enumerate the complete set of Gaussian illuminants from the light-
color atlas by stepping through values of μl and σl, and are 
guaranteed that each will be of a different chromaticity.  In 
practice, a step size must be chosen. Stepping uniformly in each of 
μl and σl discretizes the 2D space into bins. Experimentally, the 
ranges of both μl and σl were divided into 20 intervals each, for a 
total of 400 accumulator array bins.  

 
To facilitate the voting procedure, we pre-compute a table 

containing all the possible material-lighting pairs (σl,μl) and 
(σm,μm)  along with the corresponding (τ1 ,τ2) chromaticity values 
they would produce given sensor sensitivity functions Rk(λ) 
according to Equation 4. The Gaussian illuminant spectrum gl(λ) 
and the Gaussian reflectance spectrum gm(λ) are both easily 
computed from the wrap-around Gaussian definition of equations 
19-26 of [2]. Since only chromaticities are required, we can set 
both km=1 and kl=1 and compute the chromaticity of the sensor 
response using Equation 5. 

 
For the look-up table to be complete, all possible (σm,μm), 

(σl,μl) pairs should be considered, which leads once again to a 
choice of step-size. Larger steps mean a coarser quantization; 
smaller steps mean a larger table. In the tests reported below μ  
and σ are discretized as:  

 
380 ≤  μ   ≤ 780 in steps of 5 nm  
0 ≤ σ ≤ 400 in steps of 5 nm  

 
This choice of step-size leads to a table of about 107 entries, 

each entry consisting of the 6-tuple (σ1,μ1,σ2 ,μ2,τ1,τ2).  
 
 The voting process for each input chromaticity (τ10,τ20) then 

involves finding all the table entries of matching chromaticity. 
Two chromaticities are considered to match when norm(τ0–τtable) is 
small. 

Algorithm Summary 
1. Pre-compute a table consisting of all the pairs of (σl,μl) and 

(σm,μm) along with their corresponding chromaticities at a 
given quantization step-size. 
 

2. Given an image, compute its chromaticity histogram. The 
tests below are based on a 30x30 histogram. Binarize the 
histogram based on a threshold on the minimum number of 
occurrences. This eliminates spurious chromaticity values 
from noise. 
 

3. For every distinct image chromaticity, find all the matching 
chromaticities in the table and return the corresponding σl  and 
μl pairs.  

 
4. For each (σl,μl) pair found in step 3, increment the 

accumulator array with a vote for that illuminant.  
 

5. Once all distinct image chromaticities have been processed, 
the scene illuminant is determined by the (σl,μl) of the 
accumulator array bin with the maximum number of votes. 
Figure 3 shows an example of an accumulator array filled 
with votes. Given (σl,μl), its chromaticity is easily computed 
via Equation 5. 
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Figure 3. An example of the accumulator array of the number of votes 
generated by 30 image RGBs. The ranges of peak wavelength μ (right-hand 
axis) and spectral bandwidth σ (sigma axis), which are [380nm, 780nm] and 
[0,400] respectively, have been divided into 20 intervals, giving 400 bins in 
total.   

Results 
The Projected Manifold Intersection method has been tested 

on both the SFU 321-image set [8][9] and the SFU HDR image set 
[10][11].  These are the only two color constancy datasets we are 
aware of that include the spectral sensitivity functions for the 
cameras used. Its performance is compared to that of MaxRGB 
algorithm, MaxRGB (bicubic preprocessing version of [11]), 
Greyworld, Do-nothing, Greyedge [12][1], and Color by 
Correlation Bright (Color by Correlation using bright pixels only 
[5] and tested on only 310 of the 321 images). The images in the 
321-set are linear (gamma=1) images of indoor scenes. The results 
are tabulated in Table I. The Do-Nothing error is the error obtained 
by simply assuming the scene illumination is always white (i.e., 
estimating its chromaticity as r=g=b=1/3). The error is the angular 
error in degrees between the estimated and ground-truth measures 
of the illumination’s r,g,b. 

For the HDR set, we computed a second look-up table based 
on the spectral sensitivity functions for the Nikon D700 camera 
used for that dataset. Table II illustrates the performance of the 
Manifold Intersection method in comparison to the other methods 
on HDR image database. 

 
 
 
 
 
 
 
 
 
 
 

Table I: Performance of Projected Manifold Intersection in 
comparison to other well-known illumination-estimation 
methods on the 321 linear images of the SFU dataset. The error 
measure is angular error in degrees. 
Method Median Average Max 
Do-Nothing 16 17 37 
Grey World 7.1 9.8 7 
Max RGB code of [1] 6.5 9.1 36 
Grey Edge 3.7 6.1 28 
SoG 4.0 6.0 25 
MaxRGB (bicubic) 3.1 5.6 27 
CbyC bright from Table V 
of [5] 3.2 6.6  

Projected Manifold 
Intersection 4.9 6.7 29 

Table II: Performance of Projected Manifold Intersection in 
comparison to other well-known illumination-estimation 
methods on the 105 linear images of the SFU HDR dataset. The 
error measure is angular error in degrees.  
Method Median Average Max 
Do-Nothing 15 15 30 
Grey world 7.3 7.9 23 
Grey Edge 3.9 6.0 25 
SoG 4.0 6.0 25 
MaxRGB (bicubic) 3.9 6.3 28 
Projected Manifold 
Intersection 4.4 7.1 24 

Conclusion 
 Logvinenko’s color atlas theory provides a structure in which 

a complete set of color equivalent material and illumination pairs 
can be generated to match any given input RGB color. In 
chromaticity space, the set of such pairs forms a 2-dimensional 
manifold embedded in a 4-dimensional space. This manifold is the 
material-lighting-invariance manifold. For single-illuminant 
scenes, the illumination for different input RGB values must be 
contained in the intersection of the illuminant components of the 
corresponding manifolds. The proposed Projected Manifold 
Intersection method estimates the scene illumination based on 
calculating the intersection through a Hough-like voting process. 
Overall, the performance on the two datasets for which camera 
sensitivity functions are available is comparable to existing 
methods. The advantage of the formulating the illumination-
estimation in terms of projected manifold intersection is that it 
expresses the constraints provided by each available RGB 
measurement within a sound theoretical foundation.  
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