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Abstract
Vesselness in an image is a map that conveys the ex-

tent to which certain image structures resemble blood ves-
sels. The standard approach to this problem uses greyscale
images. An earlier algorithm [1] derives a vesselness map
for a colour image from the Hessian of a pure quaternion
whose components are the colour channels. As an alterna-
tive to that method, we here divide the vesselness task into
two parts: Convert the colour image to a grey image using
the Fast Color2Grey algorithm [2, 3], and then use the tra-
ditional Frangi Hessian method [4] on that grey image to
produce the vesselness map. Compared with the quaternion-
based algorithm, the method proposed here is more accurate
in identifying retinal blood vessels and also operates 104

times as fast.

1. Introduction
In [2, 3] a fast method was developed for generating

a greyscale equivalent to an input colour image such that
contrast was approximately preserved. This took the place
of a more complex method utilizing the structure tensor at
each image pixel and, in its simplest form, used a very fast
approach generating gradient maxima for x and y, taken
over the three colour channels R,G,B. This replaced as-
sociating contrast with the main eigenvector of the struc-
ture tensor, which arguably provides the optimum map
from colour contrast to grey contrast. In this max-gradient
“Fast Colour2Grey” method, contrast-preserving grey gra-
dients are the output, with a corresponding grey image
developed using projection onto integrable gradient com-
ponents and subsequent re-integration using a least-squares
solution of the Poisson equation. The latter step is also fast
because it can be carried out in the Fourier domain.

In [1] a method was proposed for incorporating colour
information into the “vesselness” problem, a method in
medical imaging for generating a measure indicating long
tubes, and thus useful for problems such as identifying
blood vessels in retinal images or blood flow within an
artery from angiograms. The standard approach to this
problem was enunciated in [4], and uses eigenvalues of a
Hessian matrix (the 2×2 array of second-derivatives of the
image with respect to x and y) to indicate the direction of
least curvature. The method [1] for incorporating colour
into this method was based on an elaborate construction
utilizing colour as a pure quaternion, and a quaternion-
based singular value decomposition to calculate the needed
eigenvalues.

Here instead we use the Fast Colour2Grey method, as
a mechanism for including colour contrast, and then apply

the standard vesselness algorithm. As well as verifying that
indeed colour does improve accuracy of finding vessels, we
obtain substantially better results than the previous colour
method, along with an increase in speed of 4 orders of
magnitude.

The Frangi vesselness measure [4] is a standard ap-
proach to obtaining an indicator of structures in medical
imaging that have much higher curvature across a direction
than along that direction.

The Frangi filter identifies vessels using the informa-
tion in the eigenvalues of the Hessian matrix Hσ computed
at scale σ. Since the Hessian involves second-derivatives,
it is curvature that is being used as the feature. The steps
of the algorithm are as follows:

Algorithm 1:

For each scale σ:
The image is convolved with a Gaussian kernel of size σ.

At this scale we calculate the Hessian matrix Hσ.
Derivatives are “γ-scaled” with a power, to maintain
similarity of scales
(default γ = 2 ⇒ ∂2/∂x2 is scaled by σ2).

For each Hessian matrix we calculate the eigenvalues λ1

and λ2 with | λ1 |<| λ2 |

The main idea behind the Frangi filter is that for an ideal
vessel we have |λ1| ≈ 0 and |λ1| ≪ |λ2|

Frangi et al. used the ratio RB = λ1/λ2 as a vesselness
measure since it attains its maximum value for a
blob-like structure and is zero whenever λ1 ≈ 0
or λ1 and λ2 tend to vanish (still remains bounded).

To dampen the effect of background pixels,

the magnitude of the derivatives S =
√

λ2

1
+ λ2

2

is also considered, where a low value
indicates low vesselness.

The vesselness measure at scale σ is then defined to be:
Vσ = 0 if λ2 < 0

else exp
[

−R
2

B/(2β
2)
] (

1− exp
[

−S
2/(2c2)

])

,
where β and c are parameters which control the
sensitivity of the filter to the measures RB and S.

Defaults values are β=0.5 and c=half of the
max-value of the Hessian Frobenius norm.

A set of σ values is used (default = {1, 3, 5, 7, 9 })
and the feature is taken to be the max-feature across scales.
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(a) (b)

(c) (d)
Figure 1. Typical Frangi-Vesselness results for greyscale inputs. Left: Input;

Right: Output.

Fig. 1 shows typical results for medical image greyscale
input images. We obtained these results by running a
standard reference implementation [5] provided in (non-
optimized) Matlab, on input greyscale coronary artery and
angiogram images.

Other approaches for devising vesselness descriptors
led up to and have evolved since the seminal paper [4]:
Using the Hessian to capture second-order derivative in-
formation was first proposed by Koller et al. [6] and en-
hanced by Lorenz et al. [7], Sato et al. [8] and Frangi et al.
[4], all analyzing eigenvectors of the Hessian matrix to esti-
mate vessel orientation. Later methods building upon the
Frangi vesselness algorithm are also typically built upon
curvature and the Hessian (see, e.g., [9]).

As an alternative to the Hessian, Armande et al. [10]
and Prinet et al. [11] used the Weingarten matrix in dif-
ferential geometry. In another effort, Westin et al. [12]
used eigenvalue analysis of a tensor built from a set of 3D
quadrature filters. In a recent work, Bauer and Bischof
[13] applied the Frangi vesselness criteria to the local Ja-
cobian of the vector space obtained from gradient vector
flow diffusion [14] and claimed this alternative approach
overcomes most of the shortcomings of multi-scale Hessian
based filters.

Nevertheless the original method is that which is cited
most frequently, notwithstanding its known tendency to
perform poorly for crossings (when 3D is imaged in 2D) or
bifurcations, and also for high-curvature points. The origi-
nal method is typically retained as a preprocessing step for
more complex vessel segmentation methods [15].

Lesage et al. (2009) state that “the method from
Frangi et al. (1998) has been extensively used in practice,
owing to its intuitive geometric formulation” and therefore,
in order to make a comparison with the most standard
technique, the Frangi filter [4] is that which we use here.
The interested reader may peruse the extensive overview

of vessel detection techniques in [16, 9, 15].

2. Colour Contrast into Grey Contrast
Here we propose including colour information into the

vesselness calculation by simply using the greyscale out-
put of the Fast Colour2Grey method [2, 3] as input to the
standardized Frangi-Vesselness method, rather than gener-
ating an elaborate (and slow) mathematical framework to
incorporate colour as in §3 below. Moreover, in §4 we show
that this simpler approach is considerably more accurate is
terms of agreement with ground-truth vessel segmentation.

The Fast Colour2Grey method forms a fast approxi-
mation for a standard and disciplined method for mapping
colour contrast into greyscale contrast. Let a colour im-
age be denoted ρ , with components k = 1..3. Then the
gradient image for each channel k = 1..3 has two com-
ponents, denoted ρk,x, ρ

k
,y: respectively the partial deriva-

tives ∂ρk/∂x and ∂ρk/∂y. Di Zenzo’s structure tensor Z is
formed as the symmetric 2× 2 matrix

Z =





∑

k
ρk,xρ

k
,x

∑

k
ρk,xρ

k
,y

∑

k
ρk,xρ

k
,y

∑

k
ρk,yρ

k
,y



 (1)

Since Z is symmetric, its eigenvectors are the 2-vector
columns {v 1,v 2} of a real, orthogonal matrix V . The
eigenvector associated with the largest eigenvalue points
in the (unsigned) direction of maximum contrast [17]. So a
standard way to make a grey gradient from a colour set of
gradients is to adopt as the output grey gradient the direc-
tion of maximum change, which is the maximum-eigenvalue
direction v = v 1. Vector sense (sign) is taken to be that
of increasing luminance value.

Now an excellent approximation of this approach, that
is much faster than finding eigenvectors (and also dispenses
with the need to watch for sign flips) was given in [2].
That method uses the straightforward scheme of using the
maximum change over all the colour channels, R,G,B, as a
simple but effective approximation to the eigenvector ap-
proach.

The method went on to distinguish between forward-
facing or backward-facing derivatives, and generating a
best-maximum in each case. Here, in the interests of speed
we adopt the simplest formulation for the problem, as given
in [2]: find the maximum, over R,G,B, for the right-facing
x-derivative and the downward-facing y-derivative. Then
the approximation of a gradient formed for a greyscale im-
age, g, is ∇g given by


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using colour gradients ∇ρ = {ρk,x , ρ
k
,y}, k = 1..3,

find scalar-field g gradients:

∇gE,x =
max abs

k
(

ρk,E,x

)

where E is the East-facing x-derivative;
and similarly for the South-facing y-derivative.

(2)

That is, we have chosen the maximum change in any colour
channel as our tentative grey-gradient ∇g.

However, it need not be the case that ∇g actually
forms the gradient of an image — i.e., the gradient pair ∇g
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need not be “integrable” (and in fact it would be surprising
if it were so). Therefore we must form a best least-squares
solution to recover a grey image g. This is best carried out
in the Fourier domain and here we make use of the method
set out in [18], where the least-squares solution is directly
found in Fourier space. The output of that method is a
greyscale field, unique up to an unknown constant of in-
tegration, which we set here by mapping the mean to the
mean of the luminance. The method [18] is extremely fast
because it simply involves an analytic step combining the
Fourier transform of the two gradient components into the
Fourier transform of a greyscale whose Fourier gradient is
closest in a least-squares sense to the given input gradi-
ents. Altogether, we thus combine a very fast max-finding
routine with this also fast Fourier image generator, making
for a fast greyscale generator.

The output of Fast Colour2Grey is then input to
Frangi et al.’s vesselness procedure, which is also fast (as-
suming a fast built-in eigenanalysis). To indicate how this
approach behaves consider an input colour image, shown
in Fig.2(a) (reproduced from [1]1). If we simply use Lumi-
nance, defined here as L = R+G+B, then the Vesselness
feature is as in Fig.2(b). On the other hand, if we first
incorporate colour contrast by using the Fast Colour2Grey
algorithm then output is as in Fig.2(c) — an examination
reveals more features are discernible using colour informa-
tion as part of the input.

Below, in §4 we go on to quantify this improvement
stemming from colour information, utilizing a database of
colour digital retinal images.

3. Complex Colour Hessian
Along with complex numbers, quaternions form an-

other variant of generalized numbers. In this case there is
still one real value, but now 3 pure quaternion values, mak-
ing up a 4-component quantity. The rules for composition
of quaternions were set out by Hamilton in 1843. Unit
vectors for the three pure-quaternion values are denoted
i, j, k.

In [1] it is suggested to move colour into the quaternion
realm by forming a pure-quaternion Hessian matrix,

Hq= i

(

R,xx R,xy

R,yx R,yy

)

+ j

(

G,xx G,xy

G,yx G,yy

)

+ k

(

B,xx B,xy

B,yx B,yy

)

Then to develop the eigenvalues required in Algo-
rithm 1 above, Ref. [1] suggests utilizing the quaternion
version of Singular Value Decomposition. Here, we sim-
ply made use of the standard Matlab package [19] for this
quaternion-SVD calculation. This quaternion SVD calcu-
lation is exceedingly slow, and this is compounded by the
fact that derivatives are taken over five scales σ, with the
maximum forming the feature. Calculation of vesselness
then proceeds by substitution of these eigenvalues into the
standard Frangi filter [5].

The two colour-based methods are summarized as fol-

1http://www.funny-potato.com/jellyfish.html (access date:
2011/3/15)

(a)

(b)

(c)
Figure 2. (a): Colour input image; (b): Vesselness result using greyscale

Luminance from RGB image; (c): Vesselness using Fast Colour2Grey

greyscale.
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lows:

Algorithm 2: Fast Colour2Grey

Apply the Fast Colour2Grey algorithm to the input
colour image.

Proceed with Algorithm 1.

Algorithm 3: Quaternion Colour

Assign the 3 channels of the input colour image to a
pure quaternion.

Apply the quaternion-SVD routine.
Proceed with Algorithm 1.

4. Application to Digital Retinal Images
Images such as the colour input in Fig.2(a) are fairly

noise-free. However, many images required as input to ves-
selness determination are quite noisy. The colour retinal
images in the DRIVE database (Digital Retinal Images for
Vessel Extraction) [20] constitute a standard set of such
difficult noisy images: as well as having low contrast, some
background intensity values are larger than vessel intensi-
ties, and as well there is interreflected light present in the
form of reflection of light on vascular walls. The influence
of strong edges may typically result in two vessels being
identified rather than one, for each vessel profile.

Fig. 4(a) shows an input colour image, and figures
(b,c,d) show results for the standarde Luminance-based
vesselness measure, for the Fast Colour2Grey based ves-
selness, and for the method [1]. As well, Fig. 4(e) shows
the manually segmented boolean result for ground-truth
vessels and (f) shows the boolean result for the grey from
Fast Colour2Grey. For each method, identical program
parameters were used, in the reference implementation [5].
For Method [1], eigenvalues were calculated by that method
instead, but all else remained the same. (Note that using
the parameters as stated in [1] instead wrongly produced
double edges: bi-modal distributions across vessels.)

To compare methods, we generated vesselness
greyscale images, and identified pixels above the 95-
percentile as vessels. Comparison with ground truth is
via the sum of absolute differences between the boolean
manually-selected vessels and those identified by each
method, divided by the image size to form a percentage
error. Results are shown in Table 1, over the test database
consisting of 40 input images. The Fast Colour2Gray
method had a typical runtime of 1.3 sec. for an image res-
olution of 584 × 565 pixels; whereas the method [1] had an
average runtime of 2×104 sec. for the same sized image.2

5. Conclusions
As can be seen from Table 1, colour has an important

effect on generating more accurate vesselness segmentation.
The simple Fast Colour2Grey method provides sufficient

2Mean errors in Table 1 are for all 40 database images for the
first two rows; for the third row only 10 images were processed,
on a colony of PCs with a great many cores and large distributed
memory, before 50-hour walltime out-of-time job crash.

Method Min% Median% Mean% Max%

Luminance 5.62 7.26 7.36 9.16

FastCol2Grey 5.23 6.89 6.93 8.91

Quatern. 8.46 9.27 9.53 11.10

Table 1: Mean sum of absolute errors for boolean vessel pixels

(divided by image size, as percentage).

colour contrast information so as to improve Frangi’s ves-
selness procedure. Moreover, it improves on a previous
colour method’s accuracy, whilst speeding up run time by
4 orders of magnitude.

In regard to future work, the approach we have used
here to combine colour and vesselness has been to simply
use the Fast Colour2Grey procedure to make a grey, and
then make a Hessian. Other approaches to be explored
would also include (i) Finding the Hessian in R and in G
and in B, and use each max matrix element overall; and
(ii) Using the max-gradient over R and G and B and go
on to develop a Hessian matrix from a further derivative of
that gradient, as opposed to re-integrating to a greyscale
image as an intermediate step.

As an improvement to output generated from the
Frangi et al. algorithm, we have begun to consider how
to provide an accented colour output, utilizing informa-
tion in the input RGB image along with the output vessel-
ness. Fig. 3 shows an input retinal image along with the
same image, but with the achromatic channel replaced by
the vesselness value. Here, we have used Wandell’s colour
opponent space [21] to split brightness from chroma: the
original chroma is put back into the accented image, with
luminance replaced. Further work could extend such im-
ages and explore how colour may be best put to use in
vesselness visualizations.

So far, we have used the most-utilized embodiment of
the vesselness idea [4]. For future work, we shall consider
the alternative descriptors for vesselness as discussed in
§1 and determine what effect colour contrast has on these
competitor methods.
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(a)

(b)
Figure 3. (a): Input colour retinal image; (b): Output replacing Luminance

channel by Vesselness measure.
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(a) (b)

(c) (d)

(e) (f)
Figure 4. (a): Input image; (b): Vesselness value, using Luminance in the standard algorithm [4]; (c): Vesselness using the output from Fast Colour2Grey [2];

(d): Quaternion-based method [1]; (e): Manually segmented boolean vessel pixels. (f): Fast Colour2Grey boolean vessel identification.
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