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Abstract
Gamut volume computations in perceptual spaces are use-

ful for optimizing designs of color displays. We develop a useful
representation of the gamut of an additive display that facilitates
efficient numerical computation of the gamut volume. For three
primary systems, our representation coincides with the obvious
representation of a three-primary additive gamut, while for multi-
primary systems, the representation we develop provides a par-
tition of the device gamut as a disjoint union of displaced three
primary gamuts thereby facilitating a computation of the overall
gamut volume as the sum of these individual three primary gamut
volumes. Based on our representation, we develop and evaluate
several alternative numerical schemes for gamut volume compu-
tations in perceptual spaces, comparing their accuracy and com-
putational requirements.

1 Introduction
A fundamental choice when designing displays is the selection
of the color primaries [1, 2]. In practice, this selection represents
a multi-way trade off between the color gamut, dynamic range,
power consumption, and material cost and environmental con-
cerns. For optimizing display design, modeling and analysis of
display gamuts is therefore of significant interest.

Because most displays are additive devices, their gamut in
additive color spaces, such as the CIE XYZ color space [3], can be
modeled in a relatively straightforward manner [4–6]. For three
primary display systems, computation of the gamut volume in the
additive spaces is also straightforward. However, the gamut vol-
ume in a linear additive color space correlates very poorly with an
observer’s perceptual assessment of the gamut volume. Conse-
quently, for the purposes of display optimization, the gamut vol-
ume in a perceptually uniform color space such as CIELAB [3] is
much more useful. Unfortunately, it is not feasible to analytically
compute the gamut volume in perceptually uniform color spaces
and numerical computation is therefore utilized in practice [7].

The difficulty of such numerical computations is com-
pounded by the fact that in perceptual color spaces, display
gamuts are usually nonconvex. For multiprimary systems, an ad-
ditional challenge arises from the fact that for the computation
of gamut volume, the gamut representation does not immediately
indicate an obvious way for dealing with the degeneracy arising
from multiple metameric options available for a given colorime-
try.

In this paper, we first develop representations for display
gamuts in additive color spaces that facilitate computations of
gamut volumes, both in additive and perceptual spaces, particu-

larly focusing on multiprimary display systems where the defini-
tion of the display gamut does not naturally lead to such a repre-
sentation. We then consider different methods for numerical com-
putation of display gamut volume in perceptual color spaces, all
based on the gamut representations that we develop for this pur-
pose. We evaluate the accuracy vs computation time trade-offs for
the different methods.

The paper is organized as follows. Section 2 presents the
mathematical framework for modeling display gamuts in addi-
tive color spaces and characterizes the display gamut volume in
additive color spaces for both three primary and multi-primary
systems. Section 3 considers the computation of gamut volumes,
first outlining the computation in additive color spaces and then
addressing the computation in perceptual color spaces. Section 4
presents results from tests conducted to evaluate the methods,
comparing the accuracy and computation time requirements for
the different methods. Section 5 concludes the paper by summa-
rizing the main findings.

2 Display Gamuts for Three Primary and
Multiprimary Displays

A color produced by a display system with primaries vectors
p1,p2,p3, specified in an additive color space, is obtained by a
linear combination of the primaries, and can be represented by
the tristimulus value

tP(α) = Pα, (1)

where P = [p1,p2,p3] is the matrix of primaries, and α =
[α1,α2,α3]

T is the vector that determines the relative proportion
for the combination of the primaries, whose entries satisfy the
constraints 0 ≤ αi ≤ 1, i = 1,2,3.

An important characterization for display systems is given
in term of the gamut, or the set of colors the device is able to
reproduce. Adopting for simplicity the notation of the well known
CIEXYZ color space [3]1, the gamut of the display with matrix
of primaries P, denoted by G XYZ

P , is defined as,

G XYZ
P =

{
tP(α)|α ∈ [0,1]3

}

=
{

Pα|α ∈ [0,1]3
}

(2)

The maximum luminance combination, usually referred as the
white point, is obtained when αi = 1, for i = 1,2,3. Note that

1Although we use the CIE XYZ space, all definitions and results de-
scribed here can be applied to other additive color spaces.
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from the expression in (2), it is possible to conclude that the defi-
nition of gamut corresponds to the definition of the parallelepiped
that contain the origin and in the primary vectors as four of its
vertexes. In fact, the parallelepiped can be interpreted as the lin-
ear transformation represented by the matrix of primaries P of the
unitary cube [0,1]3, denoted for simplicity by C 3, and referred as
the primary space.

A system with K primaries can be similarly represented by
a 3×K matrix P = [p1,p2, . . . ,pK ], where p1,p2, . . .pK are the
coordinates of the primaries in CIEXYZ space. The gamut in
CIEXYZ space can then be obtained in a manner exactly analo-
gous to (2) as

G XYZ
P =

{
tP(α) = Pα|α ∈ C k

}
. (3)

where the primary space C K corresponds to the unitary hypercube
of dimension K.

While the mathematical representation of the gamut for a
multiprimary system in (3) closely mirrors the representation for
the three primary display gamut in (2), unlike the former repre-
sentation, the latter representation is not particularly well suited
for computation of gamut volumes, as we shall subsequently see
in Section 3. For this purpose, an alternative and more useful def-
inition is based on the fact that the gamut can be partitioned into
parallelepipeds. Specifically, for a system described by a 3×K
matrix of primaries P we have that,

G XYZ
P =

⋃
j

P j, (4)

where the summation over j ranges over the
(K

3

)
possibilities for

selecting a set P j of three primaries from the K possibilities in P
and P j = G XYZ

P j
+β j is the parallelepiped obtained by displacing

the gamut G XYZ
P j

, of the three primary system with primaries P j,

by the displacement vector β j . The displacement vector β j can be
expressed as a linear combination of the primaries P where the co-
efficients in the linear combination are 0 or 1 and the coefficients
corresponding to the primaries in P j are necessarily zero. For
space reasons, we omit a formal proof of this result and the algo-
rithm for obtaining this representation for a given set of primaries,
illustrating the result instead by examples, the first of which we
present pictorially. In Fig. 1, the gamuts for a three primary and
a multiprimary systems are shown. For the latter case, four par-
allelepipeds partition the entire gamut, corresponding to

(K
3

)
pos-

sible different choices of the primaries, with K = 4. A numerical
example illustrating this decomposition is presented in Table 1,
for a four primary system from [7] specified by the 4×3 primary
matrix

P = [p1,p2,p3,p4]

def
=

⎡
⎣ 0.3630 0.1539 0.0471 0.0758

0.1761 0.3700 0.3093 0.0244
0.0027 0.0179 0.1853 0.4415

⎤
⎦ . (5)

In Table 1, for each of the four, i.e
(4

3

)
, parallelepipeds we list the

index j, the corresponding matrix of three primaries P j, expressed
in terms of primaries defined in (5), and the coordinate vector for
the shift vector β j in the space of the primaries P in (5).

j P j Coordinates of β j

1 [p1,p2,p3] [0,0,0,0]T

2 [p1,p2,p4] [0,0,1,0]T

3 [p1,p3,p4] [0,0,0,0]T

4 [p2,p3,p4] [1,0,0,0]T

Table 1. Parallelepiped decomposition for the gamut for the
display with primaries in (5).
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Figure 1. In the top left, the gamut of a system with three primaries that

match the chromaticity coordinates for the standard REC-709 and have a

white point luminance of 100 (See configuration C1 in Table 2). In the top

right, a multiprimary system obtained by adding a primary with CIEXYZ co-

ordinates [2.02,20.02,20.02]T . The gamut for the multiprimary case is com-

posed by the union of disjoint parallelepipeds that are shown in the bottom

of the image (not to scale)

3 Display Gamut Volume
3.1 Gamut Volume in Additive Color Spaces
Additive color spaces are three dimensional and are embedded in
R

3. Therefore, they inherit the results of three dimensional ge-
ometry, which can be applied in the manipulation and analysis of
display gamuts. For a system with the matrix of primaries P in
CIEXYZ, the gamut volume V (G XYZ

P ) is the volume of the paral-
lelepiped enclosed by primaries, and therefore the gamut volume
can be defined as [8, pp. 468],

V (G XYZ
P ) = |det (P)| , (6)

where, det(·) and | · | are the determinant the magnitude opera-
tors, respectively. Note that det (P) represents the Jacobian (the
determinant of the matrix of derivatives) of the linear transfor-
mation defined by P, from the space of primaries to the gamut
in the additive space. The Jacobian in this case will be de-
noted as JP. The definition in (6) allows on to easily deter-
mine the volume when the primaries are scaled, a procedure that
is usually performed in white balance process. Let denote by
γ = [γ1,γ2,γ3]

t the vector with the scale values, then the scaled
primaries are obtained as PΓγ , where Γγ is the diagonal matrix
with entries the elements of γ . Using the properties of the de-
terminant, we have that the volume of the gamut for the scaled
primaries, V (G XYZ

PΓγ
) = γ1γ2γ3 |det (P)| = γ1γ2γ3V (G XYZ

P ), that is,

the volume is scaled by the product of the scaling factors for the
individual primaries.

Using the traditional definition of the gamut in (3), the com-
putation of gamut volume for multiprimary systems is not imme-
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diately obvious. The alternative representation introduced in (4)
provides an intuitive way for computing the gamut volume. Given
that the gamut for a multiprimary system, is composed by the dis-
joint union of parallelepipeds, which are defined in terms of the
gamut enclosed by sets of three primaries, the volume for multi-
primary system characterized by the matrix P, can be expressed
as,

V (G XYZ) = ∑
j

∣∣det
(
P j

)∣∣ , (7)

a summation of the gamut volumes
∣∣det

(
P j

)∣∣, over all possible(K
3

)
choices of three primaries from the k columns of P. This

result was previously stated in [9], though without justification.

3.2 Gamut Volume in Perceptual Color Spaces
Perceptually uniform spaces are especially useful to quantify
color differences that correlate with observers’ assessments.
These spaces are obtained by transforming additive spaces by us-
ing a nonlinear and space variant function, denoted in this paper
by F (·). Linearity is lost, and therefore definitions of gamut as
provided in Section 2 are not feasible. That is, a more accurate
representation of color perception is obtained at the expense of
loosing the benefits of the simplicity of additive spaces. Nonethe-
less, F is usually a continuous and differentiable function, which
represent an important property to be exploited. For the rest of
the document, we base our notation for perceptual spaces on the
notation for the standard and widely used CIELAB color space.

The gamut of color perception for a display systems with ma-
trix of primaries P is obtained by transforming the display gamut
from an additive space,

G LAB
P =

{
F (tP(α)) |α ∈ C K

}
. (8)

The parallelepiped that represents the gamut in an additive space
is transformed in a non convex solid, as shown in Fig. 2, where
the presence of surface concavities can be appreciated. The ma-
nipulation of the gamut is difficult, and for the particular case of
volume, there is no analytical expression. Approximations for the
volume must deal especially with the non-convex shape feature of
the solid.

Figure 2. Gamut in CIELAB that is obtained by transforming a gamut in

CIEXYZ. In the left a view from the La plane, in the right a view from the

plane ab

The most general definition for gamut volume is given by,

V (G LAB) =
∫ ∫ ∫

[L,a,b]∈G LAB
dL dadb. (9)

However, the lacking of an analytical definition for the gamut
in perceptual spaces makes difficult the direct computation of the

expression in (9), even by numerical methods. Because F is non-
singular2, differentiable and the partial derivatives are continuous,
the change of variable theorem can be used to translate the com-
putation of the volume V (G LAB) to a computation of volume over
G XYZ , the gamut in the additive space [10].

For three primary systems, based on the fact that gamut is ob-
tained by a nonsingular linear transformation of the unitary cube,
the whole computation can be performed in the space of primaries
and the gamut volume can be expressed as follows,

V (G LAB) =
∫ ∫ ∫

α∈C 3
|JPJF (Pα)|dα1dα2dα3, (10)

where JF represents the Jacobian of the transformation from the
additive to the linear space ,F . Note that JF must be evaluated
at Pα .

For multiprimary systems, the decomposition of (4) repre-
sents the gamut in CIE XYZ space as a union of disjoint paral-
lelepipeds {P j} j , where, as indicated earlier, the parallelepiped
P j is the gamut of the three primary system specified by the pri-
mary matrix P j displaced by β j . As a consequence the gamut in
CIELAB space can also be obtained as the disjoint union of the
transformation of the parallelepipeds, i.e.

G LAB =
⋃

j

F
(
P j

)
(11)

The nonsingularity of the nonlinear transformation F , implies
that the above expression represents a disjoint union of subgamuts
in CIELAB space and the gamut volume in CIELAB can therefore
be written as

V
(
G LAB

)
= ∑

j
V

(
F

(
P j

))
(12)

Each subgamut volume in the summation above can then be ob-
tained in a manner analogous to that used for the three primary
system in (10). Specifically, we have

V
(
F

(
P j

))
=

∫ ∫ ∫
α∈C 3

∣∣JPJF (P jα +β j)
∣∣dα1dα2dα3,

(13)

Although the expressions in (10), (12), and (13) simplify the
expression for volume compared with (9), for the general sce-
nario, an analytical solution does not exist. However, these ex-
pressions facilitate the use of numerical methods to obtain accu-
rate results [11], which we develop in the following section.

3.3 Efficient computation of Gamut volume in
Perceptual Spaces

In the previous section we translated the computation for gamut
volume from perceptual to additive spaces, exploiting their sim-
plicity for gamut representation. In this section we present differ-
ent methods for the numerical evaluation of the integral in (13).
Specifically, we consider a numerical computation of the integral
of volume, an estimation based on triangularization of the gamut
solid by tetrahedrons, an estimation obtained by computing the
convex hull of the gamut and a volume computation based on a
local linearization of the perceptual space.

2Strictly speaking, one to one.
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As a first step, we note that it can be shown that for the spe-
cific case of CIELAB that,

JF (X ,Y,Z) =
11600000
XwYwZw

g(X/Xw)g(Y/Yw)g(Z/Zw), (14)

where,

g(t) =

{
(1/3)t−2/3 for t > (6/29)3

(1/3)(29/6)2 for t ≤ (6/29)3 , (15)

and [Xw,Yw,Zw]T is a white point reference in CIEXYZ, which,
depending on the analysis required, can be selected as the white
point of the display.

Based on the fact that F is a differentiable function, we have
by the Taylor’s theorem that for every x0 ∈G XYZ , a point x satisfy
that,

‖F (x)−F (x0)−JF (x0)(x−x0)‖→ 0, (16)

as x → x0 [10]. In equation (16), JF is the matrix of partial
derivatives of F , also known as the Jacobian matrix. This means
that in small regions around x0 the transformation can be linearly
approximated3 by the matrix JF (x0).

Therefore, an approximation for the gamut volume can be
obtained by generating a partition of the the gamut in CIEXYZ
Space into the union of disjoint and uniform polyhedra of vol-
ume v and centered in xl , where l ∈ L. A partition in CIEXYZ
determines a partition in CIELAB, such that the l-th partition el-
ement has a volume vLAB

l , that can be approximated computed as,
vLAB

l = v |JF (xl)|. In that case the gamut volume can be approxi-
mated by

V (G LAB) ≈ v ∑
l∈L

|JF (xl)| . (17)

3.3.1 Cubic Tessellation
Different options for the partitioning element and the evaluation
point can be done. As a first case, we consider a tessellation made
by parallelepipeds. A uniform partition of the gamut (a paral-
lelepiped) is obtained by dividing each of the edges in N equal
parts. In that case, all the parallelepipeds share a constant volume
given by JP/N3, and if N is small enough, the linearity assumption
is approximately correct, and the gamut volume can be obtained
as,

V (G LAB) ≈ |JP|
N3 ∑

l∈L

|JF (xl)| . (18)

The expression in (18) only requires the computation of the
Jacobian for N3 points, and given the geometry, the center of the
parallelepipeds are taken as the evaluation points xl

3.3.2 Tetrahedral Tessellation
Every parallelepiped as defined in the previous method is parti-
tioned by six uniform tetrahedra with volume JP/(6∗N3). In this
way, we obtain a finer set of sample points, and their distribution

3A local linearization of CIELAB has previously been effectively uti-
lized in defining analytically computable metrics for color recording de-
vices that correlate well with perceptual color errors [12].

in the space makes possible to capture some more information
that a cubic interpolation does not provide. A similar expression
as in (18) can easily be inferred. A natural point for the Jaco-
bian evaluation is the centroid of of every tetrahedron. However,
different tessellations of a parallelepiped can be obtained, leading
to different sample points. As shown in Section 4, that different
selections lead to very different performance, specially when the
gamut subdivisions are small in number.

One of the possible tetrahedral partitions of a cube is ob-
tained by imposing the constraint that the main diagonal of the
cube to belongs to every tetrahedral. This practice is commonly
used in other applications like interpolation for color space con-
versions, where the “device gray” axis plays a significant role
[13]. The gray region still plays an important role in the context
of volume computation, due to its perceptual significance that can
be expressed in terms of volume. However, applying the strategy
of partitioning along a shared main diagonal is disadvantageous.
The gray axis constraint determines tetrahedrons that cover very
similar regions around the gray label, and therefore the centroids
are located far from this region, losing important information in
perceptual changes and leading to poorer approximations. On the
other hand, a partition where every tetrahedron covers different
regions of the gray axis, is able to distribute centroids that better
capture perceptual changes, providing a more accurate approxi-
mation. The results in Section 4 validate this analysis.

An adequate selection of a partition highlights the impor-
tance of selecting the sample points, in this case determine by the
centroids of the tetrahedrons. The centroid is a natural point to
choose, and it is easy to compute. Nevertheless, there are other
points that characterize a tetrahedron, being one of them the in-
center. As described in next section, the incenter points offer bet-
ter approximations, although its computation is more involved.

Finally, it is important to mention that in a more general sce-
nario, the volume of each partition element can be approximated
by sampling in more that one point inside the volume, that is,
vLAB

l = v∑m
i wi

∣∣JF (xi,l)
∣∣, where {wi}i<=m represent weights fac-

tors, not necessary positive, for sample points
{

xi,l
}

, and satisfy
∑i wi = 1. General rules for choosing the number and the location
of the sample points have been developed in the context of finite
element analysis [14,15]. A particular selection is taken based on
a trade-off between efficiency and accuracy.

3.3.3 A Nonlinear Approximation by Tetrahedral Ele-
ments

The linear approximation developed suggest also that the poly-
hedrons that tessellate the gamut in the linear space, are approx-
imately transformed into polyhedrons in a perceptual space. In
that sense, once the tessellation is obtained in the linear space, by
following the same strategy as in Section 3.3.2, the vertexes of the
tetrahedrons are transformed to the perceptual space, by means of
the non linear transformation F , and assuming that they are still
vertexes of tetrahedrons, the volume for all the solids are com-
puted and summed up.

4 Results

The different methodologies described in Section 3.3 were
evaluated for three primary and multiprimary systems. For the
three primary case, we compute the gamut volume for the con-
figurations of primaries shown in Table 2. They include a set of
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primaries that match chromaticity values of important standards,
and arbitrary configurations selected by the authors. The volumes
in CIELAB space obtained from the numerical integrations are
also included.

As a first step, we evaluated the performance between differ-
ent choices for tetrahedral partitioning. Figure 3 shows two possi-
ble tetrahedral tessellations of a cube and their and their effect on
the distribution of the centroids. The partition which tetrahedrons
share the gray axis distributes the centroids (labeled as circles) far
from the white and dark regions.In the the other partition the gray
axis does not belong to any tetrahedron, but crosses all of them. In
the latter case, the centroids are distributed along the gray axis. In
fact for this case, every tetrahedron covers a different region along
of the gray direction, better representing the change in perceptual
space. The difference in the performance between these two con-
figurations when estimated the volume for the configuration C5
in Table 1, can been appreciated in the bottom of Fig. 3, where
the second case offers a more accurate estimation for the same
number of subdivisions comparing to the traditional partitioning,
and converging the computation to the result faster. If instead, the
volume estimation is based on the incenters, the accuracy is even
greater, and the convergence faster. For the next comparisons,
and whenever we refer to the tetrahedra tessellation method, we
will estimate the gamut volume on the incenters of the the second
partition described.

C.1 C.2 C.3 C.4 C.5
P1 x 0.64 0.68 0.64 0.4605 0.7273

y 0.33 0.32 0.33 0.2105 0.0909
P2 x 0.30 0.265 0.21 0.1429 0.1429

y 0.60 0.69 0.71 0.5714 0.6429
P3 x 0.15 0.15 0.15 0.1875 0.1250

y 0.06 0.06 0.06 0.1875 0.2500
YW 100 100 100 1.4 1.4
V (G LAB) 0.8873 1.3399 1.2298 0.3865 0.8727

Table 2. Chromaticity coordinates and luminance of the
white point for the set of primaries tested. The configura-
tions C1, C2, C3 correspond to chromaticity values for REC
709 [16], RP 431-2 [17], and ADOBE RGB [18], respectively.
The other two configuration were selected arbitrary by the au-
thors. The perceptual volume V (G LAB) for each configuration
is also shown in ΔE3

L,A,B ×106 units.

As the next step we compare the performance between the other
numerical methods proposed. The results of evaluating the lin-
ear approximations by cubic tessellation, tetrahedral tessellation,
the tetrahedral approximation using four sample points4 and the
nonlinear approximation by transforming the tetrahedral tessella-
tion, are shown in Fig. 4, that shows the convergence of gamut
volume computation for the tested configurations as a function
of the number of partitions along the edges of the gamut in the
linear color space. For few partitions, the cubic approximation
presents very poor estimations, when clearly the assumption of
linearity is not completely valid valid. The tessellation based on
tetrahedral elements provides better estimates, as a result of more
sample points (for every cube there are six tetrahedra) and better

4The weights and locations of the points are chosen according to [14].
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Figure 3. In the top, two tetrahedra partitions of the cube. In the middle,

the distribution of the centroids (circles) for both configurations, compared

to gray level axis (line between (0,0,0) and (1,1,1). In the left, the gray axis

belongs to all tetrahedrons and distributes centroids far from gray region. In

the right, the gray axis does not belong to any tetrahedron, but cross all of

them, distributing centroids along the gray axis. The incenters in the later

case (square) are located toward the boundary of the cube. The bottom

shows the gamut volume computation in terms of the number of divisions

for the three cases described: one sharing the gray axis, one where gray

axis crosses the tetrahedra and the volume is evaluated in the centroid, one

where gray axis crosses the tetrahedrons and the volume is evaluated in the

incenter.)
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C.1 C.2 C.3
P1 X 0.6700 0.6400 0.6392

Y 0.3250 0.3300 0.3299
P2 x 0.2841 0.3008 0.3008

y 0.6829 0.5989 0.5989
P3 X 0.0869 0.1501 0.1499

Y 0.5710 0.0600 0.0599
P4 x 0.1399 0.4905 0.3130

y 0.0450 0.5000 0.3282
YW 0.8798 497 602
V (G LAB) 1.6030 0.7293 0.5351

Table 3. CIEXYZ coordinates for a set of four primaries sys-
tems. The M1 system is proposed in [7] and defined in (5),
while M2, M3 were arbitrarily selected by the authors. The per-
ceptual volume V (G LAB) for each configuration is also shown
in ΔE3

L,A,B ×106 units.

distribution of these points in the space. In particular, it can be
appreciated that the estimation is better by using four points per
tetrahedron. The use of more points have a cost in computation. In
Fig. 5, where the mean computational time required to complete
the volume computation is shown as a function of the partitions.
Clearly the cubic tessellation offers the lowest the cost compared
to the other methods. The cost in computation increases for the
linear approximation by tetrahedral elements as long as the num-
ber of partitions increases, specially when the number of points
per tetrahedron to evaluate increases.

Finally the estimation obtained by transforming a tetrahe-
dral tessellation and computing the volume presents very good
estimations. The accuracy is better than the obtained by the cu-
bic approximation, and it is very similar compared to the other
tetrahedral methods. However, the computational cost is consid-
erably higher, specially for lower number of partitions. The cost
is mainly due to the transformation from linear to the perceptual
space.
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Figure 4. Convergence of gamut volume computation, for the systems

defined in Table 2, in terms of the number of divisions.

Based on the the methodology outlined in (12)– (13), the al-
gorithm were applied to compute volume for the multi-primary
configurations defined in Table 3 Figure 6 shows a plot of the es-
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Figure 5. Computational time as a function of the number of divisions. All

computations were performed in a Matlab environment on a desktop, having

a AMD Athlon 64 X2 2.0 GHz CPU with 1.9 GB memory.

timated gamut volume obtained with the different methods as a
function of the number of subdivisions along each of the paral-
lelepiped axes. The results mirror the trends seen for the three
primary case in Fig. 4. With adequate number of subdivisions,
the local linearization methods offer an accurate estimate of the
gamut volume at a low computational cost. However, in this case,
the nonlinear transformation seems to offer the most accurate re-
sults. Although the linear approximations, specially those based
on tetrahedral tessellation, offer very good approximations, it is
evident the performance is poorer. One possible reason for this
anomalous behavior is based on the gamut representation. In a
similar way as the choice of tetrahedral partition for the cube in-
fluences the results, different gamut representations offer differ-
ent coverage of perceptually important regions and thus, different
performance in volume gamut estimation. A study of the effect
on the selection of gamut representation is still pending.
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Figure 6. Volume estimation using the numerical methods proposed, for

the multi-primary systems defined in Table 3, as a function of the number of

divisions of the parallelepiped axes.

19th Color and Imaging Conference Final Program and Proceedings 137



5 Conclusion
We presented a methodology for computing gamut volumes for

three primary and multi-primary displays in perceptual spaces
that exploits gamut representations in additive color spaces to de-
velop computationally efficient numerical schemes for evaluating
gamut volume. Specifically, for multi-primary displays, we de-
velop an alternative gamut representation that simplifies gamut
volume computation. Four numerical schemes were compared
with respect to accuracy and cost for the purpose of computing
gamut volumes in the proposed framework. Our results demon-
strate that the proposed framework offers accurate results when
adequate number of subdivisions/sampling points are employed.
Among the alternatives explored, a cubic tessellation with an op-
timized subdivision of the cubes into tetrahedra, offered the most
accurate results for a given computational load.

Modifications to the overall algorithm to obtain more ef-
ficient results are still possible and constitute ongoing work.
Specifically, the current work has explored equal number of sub-
divisions along the different parallelepiped axes and equi-spaced
subdivisions along each axes. Simple modifications allow for un-
equal subdivisions with minimal increase in computational cost,
these will be explored in our continuing work.
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