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Abstract
Image super-resolution is the problem of recovering a high

resolution (hi-res) image from multiple low resolution (lo-res)
acquisitions of a scene. The main focus and the most significant
contributions of research in this area have been on the problem of
super-resolving single channel (grayscale) images. Multi-channel
(color) image super-resolution is often treated as an extension to
grayscale super-resolution by simply considering the luminance
component of the image more carefully than the chrominance
components. In this paper we address explicitly the problem
of color image super-resolution by formulating an optimization
problem that leads to convergence guarantees. The key contri-
bution of this work is the inclusion of a color regularizer that
effectively accounts for both luminance and chrominance geome-
try in images. We show results demonstrating substantial image
quality improvement over the state of the art, especially for im-
ages with significant chrominance geometry.

Introduction
The resolution of an imager is limited by the resolution of

its image sensor and the quality of its optics. In several imag-
ing applications it is useful to have the ability to recover an
image with resolution higher than that permitted by the ca-
pabilities of the imager. Image super-resolution fills this need
by recovering a high resolution (hi-res) image from multiple
low resolution (lo-res) acquisitions of a scene - provided, of
course, that the different low-res images capture different (at
sub-pixel level) views of the scene. There are several imag-
ing applications where super-resolution finds use - for instance,
medical imaging applications that use images for computer vi-
sion tasks benefit from high-res images. Another application
where super-resolution is particularly appropriate is in surveil-
lance applications where a video stream, which can provide
input lo-res frames to the super-resolution algorithm, is con-
tinuously acquired.

In simple terms, the super-resolution problem is ad-
dressed by describing first the several lo-res images on a grid
finer than the resolution of single images (an image registra-
tion problem) followed by filling in values for missing pixels
(an image interpolation problem). There has been significant
advance in super-resolution research in recent years. Park et
al. [1] give an overview of the problem and describe early ad-
vances. Most performance improvements come from solutions
to the image registration problem with better motion estima-
tion techniques.

A common thread in most work is the focus on grayscale
image super-resolution. Color image super-resolution is often
treated simply by assuming that the luminance component of
the image carries its spatial features. Algorithms that consider

the chrominance components will only use them to improve
image registration by better motion estimation [2, 3]. Very
few researchers consider explicitly the relationship between
the color channels in the interpolation problem. When they do,
a common approach is to assume that spatial high-frequency
components across the color channels are strongly correlated.
In other words, if an edge (or a feature) is sensed in one chan-
nel, it implies that the edge (or feature) exists in all channels.
Farsiu et al. [4] use this approach in a joint demosaicking and
super-resolution problem formulation with good results.

We note that the assumption about strong interchannel
correlation in high frequency components is akin to assum-
ing that most spatial features (edges and texture) appear in
some luminance-type component - found either with decompo-
sition to a standard luminance-chrominance space like YCbCr,
or with the PCA technique for decorrelating the color compo-
nents. This assumption is clearly untrue for images with strong
chrominance geometry - images in which edges and textures
are not a result of ambient illumination but due to edges be-
tween objects with different chrominance.

In this work we consider explicitly the problem of color
image super-resolution. The key contribution of this work is
the inclusion of a color regularizer that effectively accounts
for both luminance and chrominance geometry in images. We
propose an optimization framework that is separably convex,
leading to convergence guarantees, along with the enforce-
ment of constraints consistent with real-world imaging physics.
We show results demonstrating substantial image quality im-
provement over the state of the art, especially for images with
significant chrominance edge features.

Image-adaptive color super-resolution
We first present the mathematical formulation of our color

SR framework. We use the camera imaging model [1]:

yk =DBTkx+nk, 1≤ k≤ K , (1)

where x= [xT
r xT

g xT
b ]

T ∈�3n is the unknown (vectorized) hi-
res image that we seek to reconstruct (subscripts r, g, b indicate
the red, green and blue color channels respectively), yk ∈�m

represents the k-th observed lo-res image, Tk ∈ �3n×3n is the
k-th geometric warping matrix, B ∈ �3n×3n describes camera
optical blur, downsampling matrix D∈�m×3n models the alias-
ing, and nk ∈�m is the noise vector that corrupts yk.

Single-channel super-resolution
The standard SR reconstruction problem recovers an esti-

mate of x by minimizing the error between the warped, blurred
and downsampled versions of x as predicted by the imaging
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Figure 1. Venn diagram interpretation of the role of regularization. (a) The set ΩR

of all images x that minimize reconstruction error in (3). (b) The set ΩL consists of

images x with significant luminance edge information, which is distributed among the

RGB channels. Images in the intersection ΩR ∩ΩL are obtained by minimizing the

cost function in (5). (c) The set ΩC of all images x that possess chrominance edges.

Images x∈ΩR∩ΩL ∩ΩC preserve luminance and chrominance edges.

model in Eq. (1) and the observed lo-res images {yk}K
k=1:

� =
K∑

k=1

‖yk−DBTkx‖p+γρ(x), p≥ 1, (2)

where ρ(x) is a regularization term (or equivalently, a prior in
a MAP estimation set-up). We drop the generic ρ(x) term in
the subsequent algorithmic development for notational conve-
nience. Traditionally, the warping matrix Tk is parameterized
by a registration vector θθθ k, obtained from the homography ma-
trix. Although it has been pointed out in literature [5] that
the joint minimization of � under x and {θθθ k} leads to bet-
ter results than sequential optimization, a key challenge that
still remained was the tractability of the resulting optimization
problem, since � is not jointly convex in x and {θθθ k}.

The framework in [6] employs a transformation-of-
variables trick to arrive at a separably convex optimization
problem, together with the enforcement of constraints moti-
vated by real-world imaging physics. The optimization prob-
lem is stated as follows:

minimize
∑K

k=1‖yk−DBTkx‖p
subject to 0≤ x≤ 1

0≤DBTkx≤ 1, 1≤ k≤ K
Tk.1= 1, 1≤ k≤ K
B.1= 1
tT
k,imk,i = 0, 1≤ i ≤ 3n, 1≤ k≤ K

bT
i ei = 0, 1≤ i ≤ 3n

(3)

The vectors 0 and 1 have all their entries equal to 0 and 1
respectively, and their dimension is derived from context. The
first two constraints restrict pixel intensities to the range [0,1],
for processing convenience. The fact that Tk is an interpolation
matrix and B is a spatially local kernel operator is enforced by
the next two constraints. Finally, prior knowledge of the lo-
cation of the non-zero elements in the matrices Tk and B is

enforced via the last two membership constraints. The prob-
lem is solved in an iterative manner, alternating between the
optimization variables x,{Tk},B. The separably convex nature
of the problem guarantees convergence to local minima and
robustness to the choice of initial values.

Color super-resolution: state of the art
The problem of color demosaicking (recovering full-color

images from sub-sampled single-sensor images) has been ad-
dressed with the use of regularizers that explicitly maximize
inter-channel correlation. Such terms have also been found
useful for color SR [4, 7, 8]. Formally, let the matrices
Sr ,Sg ,Sb ∈ �3n×3n represent gradient operators on the red,
green and blue color channels respectively. Then, Srx repre-
sents the red channel edge map; similar descriptions hold for
Sgx and Sbx. For images with dominant luminance edges, we
then have a luminance regularization term of the form:

ρL(x)= ‖(Sr−Sg)x‖1+‖(Sg−Sb)x‖1+‖(Sr−Sb)x‖1, (4)

such that differences between pairs of color channel edge maps
are minimized. The �1-norm offers robustness to outliers. In
[7], the �2-norm version of this regularizer is used. The modi-
fied optimization cost function incorporates this regularization
term with corresponding parameter αL as follows:

�1 =
K∑

k=1

‖yk−DBTkx‖p+αLρL(x). (5)

A qualitative explanation of the role of the regularization term
is provided in Fig. 1. The ill-posed nature of the SR problem
results in a (convex) set ΩR of hi-res images x that minimize
the reconstruction error term in (3). For the color SR prob-
lem, x∈ΩR may be interpreted as the optimal solutions by the
independent-channel SR approach. In Fig. 1(b), the set ΩL
corresponds to the set of all images with significant luminance
geometry that is distributed among the red, green and blue
channels. The intersection set ΩR∩ΩL contains precisely those
images which minimize the constrained optimization problem
with the modified cost function in (5). The regularization pa-
rameter αL controls the “size” of ΩL , and by extension, the
intersection set.

Proposed approach: chrominance regularization
The ρL(x) term guides the reconstruction towards images

that preserve luminance edge information. In fact, the success
of color SR formulations incorporating such luminance priors
can be attributed to the fact that images with dominant lumi-
nance geometry are encountered most frequently in the uni-
verse of all images. However, luminance-based priors fail to
capture the useful chrominance information present in images
with significant chrominance geometry. We propose the inclu-
sion of a novel chrominance-based regularization term for such
images.

The YCbCr representation of a color image decorrelates it
into luminance and chrominance components. While a lumi-
nance edge appears in each channel of the equivalent RGB rep-
resentation, a chrominance edge, in Cb for example, appears
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prominently in the blue channel and not so in the other two
channels. Thus, for images with reasonable degree of chromi-
nance edge information, we in fact expect low correlation be-
tween the RGB color channels. For such images, we seek to
minimize edge correlation between the different color chan-
nels in the desired hi-res image as follows:

(Srx)T (Sgx)<εr g ,(Sgx)T (Sbx)<εg b,(Sbx)T (Srx)<εbr , (6)

where εr g ,εg b and εr b are suitably chosen constants. From
optimization theory, the Lagrangian formulation incorporates
this constraint into the cost function as another regularization
term:

ρC (x) = (Srx)T (Sgx)+(Sgx)T (Sbx)+(Sbx)T (Srx), (7)

with an accompanying regularization parameter αC .
A standard 2-D gradient operator like the Sobel matrix

seen commonly in edge detection problems can be used to ob-
tain Sr ,Sg and Sb. However, different images have possibly dif-
ferent edge profiles, motivating the need for image-dependent
gradient operators which are optimized for resolution enhance-
ment. Accordingly, we optimize Sr ,Sg and Sb together with the
other optimization variables in (3) in a similar iterative man-
ner. The modified cost function, with all variables explicitly
mentioned, is:

�2

�
x,{Tk},B,Sr ,Sg ,Sb

�
=

K∑
k=1

‖yk−DBTkx‖p+αLρL(x)+αCρC (x). (8)

It is easy to see that the separably convex nature of the
cost function in (8) is still preserved after the addition of the
color regularization term ρC (x). Again, we seek constraints on
Sr ,Sg and Sb which lead to meaningful gradient operators in
practice.

Suppose h[n1,n2] represents the spatial domain gradient
filter, where n1 and n2 represent the 2-D coordinates. Since the
gradient is a spatially local operator, h[n1,n2] �= 0 ∀ (n1,n2)∈
 , a finite region of support. The corresponding 2-D Fourier
transform in terms of spatial frequency variablesω1 andω2 is:

H(ω1,ω2) =
∑

(n1,n2)∈

∑



h[n1,n2]e
− jω1n1 e− jω2n2 . (9)

It follows from the high-pass characteristic of the gradient op-
erator that it has zero magnitude response at DC frequency,
so H(0,0) = 0, implying that the sum of filter coefficients is 0.
In the gradient matrix Sr (likewise for Sr and Sb), the set of
nonzero elements in every row is exactly the same as the set
of nonzero filter coefficients h[n1,n2]. So, every row of the
gradient operator necessarily sums to 0, and this condition is
captured by the constraints:

Sr .1= 0, Sg .1= 0, Sb.1= 0. (10)

The trivial case of convergence to the zero matrix is avoided by
enforcing membership constraints on the structure of the gradi-
ent operators as follows. Based on the filter coefficients of the
gradient operator used to initialize the algorithm, the locations

of the positive, negative and zero elements are fixed. We gen-
erate the corresponding set of membership vectors fr,i ,fg,i ,fb,i
whose entries assume the values +1,-1 or 0 respectively when-
ever the corresponding element of S takes positive, negative or
zero values. This leads to another set of constraints (s identi-
fies a row of the corresponding gradient operator):

(sr,i)
T fr,i = 1,(sg,i)

T fg,i = 1,(sb,i)
T fb,i = 1;1≤ i≤ 3n. (11)

Reverting to the set-theoretic interpretation, Fig. 1(c)
shows the set ΩC of images with chrominance edges. If αL
and αC are chosen suitably, the intersection ΩR ∩ΩL ∩ΩC is
non-empty. The images in that intersection set are obtained by
solving the ensuing optimization problem in (12), with the up-
shot that they preserve both luminance and chrominance edges
in a balanced, image-adaptive manner.

Optimization framework: key features
In summary, the complete optimization problem is stated

as follows:

minimize
∑K

k=1‖yk−DBTkx‖p+αLρL(x)+αCρC (x)

subject to 0≤ x≤ 1
0≤DBTkx≤ 1, 1≤ k≤ K
Tk ·1= 1, 1≤ k≤ K
B ·1= 1
tT
k,imk,i = 0, 1≤ i ≤ 3n, 1≤ k≤ K

bT
i ei = 0, 1≤ i ≤ 3n

Sr .1= 0
Sg .1= 0
Sb.1= 0
(sr,i)T fr,i = 1, 1≤ i ≤ 3n
(sg,i)T fg,i = 1, 1≤ i ≤ 3n
(sb,i)T fb,i = 1, 1≤ i ≤ 3n

(12)

As discussed earlier, this problem is separably convex in the
variables of interest. The variables are optimized in an al-
ternating manner iteratively. A judicious choice of constraints
leads to physically meaningful imaging parameters. Under l2-
norm minimization, it can be shown that the individual op-
timization problems reduce to quadratic programs, providing
computational efficiency benefits.

Chrominance information is critical to super-
resolution quality

We illustrate the importance of effectively accounting for
chrominance geometry in resolution enhancement with the
help of an example (Fig. 2). We synthetically generated multi-
ple lo-res (64 × 64) images (Fig. 2(b)) from a hi-res color im-
age of dimension 128× 128 (Fig. 2(a)) using the camera imag-
ing model in Eq. (1). Specifically, the the original hi-res image
was subjected to random translation and rotation, blurred us-
ing a 5×5 Gaussian blur and sub-sampled by a factor of two
along both dimensions to generate the lo-res images.

We reconstructed estimates of the hi-res image
(128×128) in four different ways:
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Figure 2. Illustration of significance of chrominance geometry. (a) Original hi-res image (128× 128). (b) Four sample lo-res images generated synthetically (64×64). (c) SR

performed on RGB channels independently. (d) SR performed on luminance channel only (chrominance channels interpolated in a simple manner). (e) SR performed independently

on luminance and chrominance channels. (f) SR performed with chrominance geometry-sensitive regularizer - proposed method.

1. Grayscale SR performed on red, green and blue channels
independently (Fig. 2(c)).

2. SR performed only on the luminance channel (Fig. 2(d)).
3. SR performed on luminance and chrominance channels

independently [8](Fig. 2(e)).
4. SR by explicitly incorporating chrominance information

into the recovery process (Fig. 2(f)).

Color artifacts are visible in Figs. 2(c)-(e). We argue that
these artifacts are a result of either ignoring chrominance in-
formation completely (Fig. 2(d)), or not adequately account-
ing for correlation between the RGB channels in reconstruc-
tion (Fig. 2(c)). The results of applying the proposed approach
(Fig. 2(f)) highlight the importance of effectively using chromi-
nance information for resolution enhancement.

Results and Discussion
A natural question to ask at this juncture is: how can the

same optimization framework handle a general class of im-
ages possessing reasonable chrominance geometry in addition
to the dominant luminance geometry? We now address this
issue and show experimental results to validate the approach.

Determining the parameters αC and αL
Parameters αL and αC control the relative significance

given to the reconstruction error and gradient regularization
terms in the optimization. Since the corresponding constraints
capture different information about the same color image,

we assign complementary weights to αL and αC , i.e. αL =
αmax−αC , where αmax is the maximum value assumed by αC
for good reconstruction. Our choice of αC is tied to the de-
gree of chrominance geometry present in an image. We next
present an intuitive quantitative estimate of chrominance edge
information as a pre-processing step to facilitate a good choice
of αC .

Quantitative estimate of chrominance geometry
In images with high chrominance geometry, it is reason-

able to expect a significant amount of edge information in the
Cb and Cr channels, in addition to luminance edges present in
the Y channel. We define a parameter β as follows:

β =
1

2

�‖H1xC b‖+‖H1xC r‖
‖H1xY ‖ +

‖H2xC b‖+‖H2xC r‖
‖H2xY ‖

�
, (13)

where the highpass operators H1 and H2 are respectively
formed using the 2-D Scharr operators:

h1=

⎡⎢⎣ 3 10 3
0 0 0
−3 −10 −3

⎤⎥⎦ ,h2=

⎡⎢⎣ 3 0 −3
10 0 −10
3 0 −3

⎤⎥⎦ , (14)

and xY ,xC b,xC r respectively represent the Y, Cb and Cr chan-
nels. While h1 captures horizontal edges, h2 captures the ver-
tical edges. We test over a variety of images and determine
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that β0 = 0.75 is a suitable threshold to classify the chromi-
nance geometry content in images. Fig. 3 shows sample test
images and their corresponding β values. Images in Fig. 3(b),
(h) and (i) have high chrominance geometry, as confirmed by
their large β values in comparison with the other images.

(a) 0.584 (b) 0.864 (c) 0.294

(d) 0.483 (e) 0.497 (f) 0.503

(g) 0.425 (h) 0.828 (i) 0.975

Figure 3. The computed value of β for color images with varying amounts of chromi-

nance edge information.

Figure 4. Curve that maps β values to corresponding αC .

Relating β to αC
From a given set of lo-res images, the mean β is computed

as the average of the β values obtained from the individual
images. Our aim now is to determine a mapping from β to the
αC eventually used in the optimization problem. Intuitively,
when there is minimal chrominance geometry in an image, β =
0 and the corresponding αC = 0. The complementary αL term
attains a maximum value, respecting the dominant luminance
geometry structure of the image. When β =βmax, αC attains its
maximum value and αL = 0. αC varies monotonically with β .
From the same set of images used to compute β0, we determine
suitable αC values for good reconstruction empirically, shown
in Fig. 4. For images with both types of edges, the estimation
of β ensures an image-adaptive choice of αC and αL which
preserves both luminance and chrominance information.

Experimental validation
Fig. 5 shows super-resolution reconstruction performed

on a set of lo-res images of dimension 128×128. The β value
from Fig. 3(b) indicates that these set of images have signif-
icant chrominance geometry. Fig. 5(a) shows a bilinearly in-
terpolated lo-res image for comparison, while Figs. 5(b)-(d)
show results from competitive approaches. Fig. 5(e) shows the
hi-res image reconstructed using the proposed framework, but
with a fixed set of operators Sr ,Sg and Sb. The improvement
in the quality of this image over Fig. 5(b) shows the merits of
exploiting the color correlation information. Fig.5(f) shows the
result obtained by using the entire framework in (12).

In addition to the perceptual improvements, we provide a
quantitative means of confirming the improvements provided
by our proposed approach. For images where we have ground
truth for comparison, we compute the mean-squared error
(MSE) between the ground truth xg t and the reconstructed
hi-res image x̂ as:

MSE(xg t ,̂x) =
‖xg t− x̂‖2

2

3n
. (15)

MSE values are reported in Table 1 for the parrot image from
Fig. 2 as well as for Figs. 3(g)-(h), for which ground truth
information is available. Smaller error indicates better recon-
struction. For images where we have no such reference image
to compare with, we define the following quantity:

Ji = 10

�
log

�∑K
k=1‖y−DBTkxi‖2∑K
k=1‖y−DBTkx‖2

�
+(1−β) log

ρL(xi)
ρL(x)

+β log
ρC (xi)
ρC (x)

�
, i = 1,2,3 (16)

where i = 1,2,3 refer to the methods [4], [7] and [8] respec-
tively and xi are the corresponding reconstructed hi-res im-
ages, while x refers to the hi-res image from our method. The
first term compares the reconstruction error, with the B and
{Tk} estimated according to the specific approach. The rela-
tive significance assigned to the luminance and chrominance
regularizer terms is controlled by the image-dependent param-
eter β . The matrices Sr ,Sg and Sb are chosen to be standard
gradient operators for the methods being compared, while the
optimized matrices are used in the ρL(x) and ρC (x) terms for
our proposed method.

Table 2 lists the values Ji , i = 1,2,3 corresponding to
[4, 7, 8], for the nine images shown in Fig. 3. Note that Ji
is expressed in units of decibels (dB), so that a value of 10 dB
indicates a reduction in overall error by a factor of 10. A neg-
ative value for Ji indicates that the method under comparison
performs better than our approach.

Image M1 M2 M3 M4
Parrot 7.859 17.027 14.563 20.533

Fig. 3(g) 11.537 17.081 14.366 18.169
Fig. 3(h) 12.340 30.506 20.429 36.299

Table 1. MSE values for the three images where ground truth is avail-
able. M1 refers to reconstruction using our method, while M2, M3 and
M4 refer to reconstruction from [4,7,8] respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 5. (a) Bilinearly interpolated lo-res image. (b) SR using the method in [4]. (c) SR using the method in [7]. (d) SR using the method in [8]. (e) SR using the proposed

framework, but with fixed gradient operators. (f) Result using the complete proposed framework.

Image J1 J2 J3
(a) 0.182 1.599 16.469
(b) 7.900 6.562 26.856
(c) -0.493 -1.153 17.711
(d) 0.404 -0.979 12.196
(e) 7.902 4.674 21.647
(f) 7.222 5.260 20.804
(i) 12.110 10.899 27.805

Table 2. Quantitative comparison of our proposed approach with com-
petitive methods in literature. The quantity Ji is defined in (16) (in
units of dB), with i = 1,2,3 corresponding to [4], [7], [8] respectively.
Images (b) and (i) from Fig. 3 have significant chrominance geometry.

Conclusions
Most state-of-the art color image super-resolution ap-

proaches treat the problem as an extension of grayscale super-
resolution. The few approaches that consider inter-channel
color correlation only apply well to images that have spatial
features predominantly in the luminance channel. We propose
a new approach to color super-resolution that also accounts for
chrominance geometry. We formulate the problem as a con-
strained minimization that provides a convergence guarantee.
We show results demonstrating substantial image quality im-
provement over the state of the art, especially for images with
significant chrominance geometry.
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