
Root-Polynomial Colour Correction

Graham D. Finlayson1, Michal Mackiewicz1, Anya Hurlbert 2; 1School of Computing Sciences, University of East Anglia, Norwich,

UK; 2Newcastle University, Newcastle, UK

Abstract
Cameras record three colour responses (RGB) which are de-

vice dependent i.e. different cameras will produce different RGB

responses for the same scene. Moreover, the RGB responses do

not correspond to the device-independent tristimulus values as de-

fined by the CIE. The most common method for mapping RGBs to

XYZs is the simple 3×3 linear transform (usually derived through

regression). While this mapping can work well it does sometimes

map RGBs to XYZs with high error. On the plus side the lin-

ear transform is independent of camera exposure. An alternative

and on the face of it more powerful, method for colour correc-

tion is polynomial regression. Here, the RGB at a pixel is aug-

mented by polynomial terms e.g up to second order RGB maps

to the 9-vector (R,G,B,R2,G2,B2,RG,RB,GB). With respect to this

polynomial expansion colour correction is a 9× 3 linear trans-

form. For a given calibration set-up polynomial regression can

work very well indeed and can reduce colorimetric error by more

than 50%. However, unlike linear maps the polynomial fit de-

pends on exposure: as exposure changes the vector of polynomial

components alters in a non linear way. In this paper we propose a

new polynomial-type regression which we call ‘Root-Polynomial

Colour Correction’. Our idea is to take each term in a polynomial

expansion and take its kth root of each k-order term. For the 2nd

order polynomial expansion the corresponding independent root

terms are R,G,B,
√

RG,
√

RB and
√

GB (6 independent terms in-

stead of 9: the first roots of R, G and B equal the 2nd roots of R2,

G2 and B2). It is easy to show terms defined in this way scale with

exposure and so a 6×3 regression mapping can be used for colour

correction. Encouragingly, our initial experiments demonstrate

that root-polynomial colour correction enhances colour correc-

tion performance on real and synthetic data.

Introduction
The camera characterisation methods can be divided into the

two main groups: (a) spectral sensitivity based (b) colour tar-

get based. The former encompass the methods, which utilise

expensive equipment: a monochromator and a radiometer [1, 2]

and therefore they are limited only to the well equipped labora-

tories. The latter encompass the methods which only require a

reference target and corresponding known XYZs (for this target).

The colour target is captured by the camera being characterised

and also measured by a spectrophotometer (for color correction

to a standard reference space such as sRGB the chart can be mea-

sured once ideally at the time of manufacture) resulting in the

set of RGB values of all patches and their corresponding tris-

timulus values. The colour target based characterization is more

widely used, as it only requires a known target and a spectropho-

tometer/chromameter. Many methods attempting to establish a

mapping between the RGB and XYZ values have been reported

in the literature and they include: three dimensional look-up ta-

bles [3], least-squares polynomial regression [4–6] and neural net-

works [6–8]. Hong et al. [4] studied camera characterization us-

ing variable length polynomial regression with least squares fit-

ting and found that camera characterization accuracy is reliable

when the number of training samples is at least 40-60. For that

sample size, they obtained ∆E (CMC(1:1)) [9] of around 1 unit.

Despite the variety of correction transforms the venerable

and simple 3×3 matrix transform has much to commend it. First,

assuming reflectances are 3 dimensional (approximately the case),

the mapping from RGB to XYZ has to be a 3x3 matrix. Mari-

mont and Wandell [10] extended this idea to model ‘pseudo re-

flectances’ which comprise that part of a reflectance that can be

measured by a camera (under different lights). To a first order

typical lights and surfaces interact with typical cameras as if re-

flectances were 3 dimensional. Another plus for linear transforms

is that they are, theoretically, independent of changes in the over-

all illumination irradiance. That is, the linear transform should

correctly correct colours independently of changes in the overall

light levels on a fixed scene. At a fixed camera exposure, as the

overall light level is scaled up or down, the RBGs recorded by

the camera in turn scale by a factor k (assuming perfectly linear

sensors). Likewise, the tristimulus values of the corresponding

surfaces in the scene will scale by the same factor k (assuming

the light level scaling is constant across wavelength). The linear

transform therefore remains the same, since the factor k cancels

out on both sides of the equation. Conversely, for a fixed scene

under fixed illumination, changes in camera exposure will induce

linear scaling of the RGBs that map to the fixed tristimulus val-

ues, necessitating a corresponding scaling of the linear transform.

This said, for typical digital camera usage we are much more in-

terested in the former cases e.g. mapping RGBs to corresponding

non-fixed; XYZs (or display RGBs). The issue of the ‘scale’ of

the display is typically dealt with by normalising to (usually) the

bright part of the image (where this normalisation can be carried

out when the image is acquired by an ‘exposure control’ algo-

rithm. Further mapping of RGBs to display range is called tone

mapping.

Nonetheless, significant errors may still result from the lin-

ear model for some surfaces. Indeed, given a linear fit from RGBs

to XYZs, errors for individual surfaces can be in excess of 10∆E.

While this ‘model error’ is high the linear map has the advantage

that it works correctly as exposure changes. Consider the same

surface viewed under different light levels in different parts of the

scene. The correct linear map taking RGBs to XYZs (or display

RGBs) is the same in both cases. This turns out to be a very im-

portant practical property which we, in this paper, treat with some

care. To reduce ‘model error’ the simplest extension to the linear

approach is to use polynomial regression. A 2nd order polynomial

expansion where each image RGB is mapped to the 9-vector [R G

B R2 G2 B2 RG RB GB]. Unfortunately, if the RGB is scaled by k,
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the individual components of the 9-vector either scale by k or k2.

Thus, if we scale our data (physically this is the effect of chang-

ing the exposure) then the best 9×3 colour correction matrix must

also change. This is a significant problem in real images. For ex-

ample if we place a reference target in a bright well exposed area

of a scene and then place it in shade the RGB values (no shade

and shade) can be a scaling factor of 10s to 1 different. Naively

used if we have a polynomial transform for our colour camera, the

in-shade target will be mapped to different colours than the target

not in the shade.

Figure 1 illustrates the problem. We trained the polyno-

mial and root-polynomial models using SFU 1995 reflectance

dataset [11]. Next, we selected small number of reflectances from

this dataset and calculated their true xy chromaticity coordinates

(marked with x). We also calculated their chromaticity coordi-

nates according to the root-polynomial model (marked with +).

And finally, we calculated their chromaticities for the polynomial

model for a number of intensity scales ranging from 0.1 to 1. In

Figure 1, one can see the chromatic shifts induced by the polyno-

mial model as one scales the intensity of the light.
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Figure 1. Selection of reflectances from the SFU 1995 dataset and their true

xy coordinates (x); xy coordinates according to the root-polynomial model of

the 4th order (+); and chromatic shifts produced by the polynomial model of

the 4th order (red).

Background
Let ρ define a three element vector representing the three

camera responses and q their corresponding tristimulus values. A

simple 3×3 colour correction transform is written as:

q = Mρ (1)

The matrix M is generally found by some sort of least-

squares regression. Let us denote a set of N known XYZs for

a reflectance target as Q and the corresponding camera responses

as the N ×3 matrix R. We find the least-squares mapping from R

to Q using the Moore-Penrose inverse:

M = (RT R)−1RT Q (2)

In polynomial regression, vector ρ is extended by adding ad-

ditional polynomials of increasing degree. In this study, we will

be investigating the following polynomials:

• (p,1): ρ = [r,g,b]T

• (p,2): ρ =
[

r,g,b,r2
,g2

,b2
,rg,gb,rb

]T

• (p,3):

ρ =
[

r,g,b,r2
,g2

,b2
,rg,gb,rb,

r3
,g3

,b3
,rg2

,gb2
,rb2

,gr2
,bg2

,br2
,rgb

]T

• (p,4);

ρ =
[

r,g,b,r2
,g2

,b2
,rg,gb,rb,

r3
,g3

,b3
,rg2

,gb2
,rb2

,gr2
,bg2

,br2
,rgb,

r4
,g4

,b4
,r3g,r3b,g3r,g3b,b3r,b3g,

r2g2
,g2b2

,r2b2
,r2gb,g2rb,b2rg

]T

Using a polynomial expansion the 3 numbers recorded in a

pixel are mapped to respectively 9, 19 and 34 numbers respec-

tively. Colour correction is now carried out by 3× 9, 3× 19 and

3 × 34 matrices. If we think of R as, in general, denoting the

polynomial response of N surfaces then Equation 2 can be used

to solve for the polynomial colour correction matrix. Of course

high order data expansions can result in unstable (rank deficient

data sets). This problem can be ameliorated by regularising the

regression.

Root Polynomials
For fixed exposure, polynomial regression really can de-

liver significant improvements to colour correction. However,

in reality the same reflectance will induce many different bright-

nesses (even for the same fixed exposure and viewing conditions).

The act of placing a surface in different parts of the scene will

markedly change its brightness. Thus, if we are to use a polyno-

mial type regression we must progress with care.

The starting point of this paper was to ask the following

question. Is there a way we can use the undoubted power of

polynomial data fitting in a way that does not depend on expo-

sure/scene irradiance? Our key observation is that the terms in

any polynomial fit each have an order e.g. R, RG and R2B are

respectively order 1, 2 and 3. Multiplying each of R, G and B by a

scalar k results in the terms kR, k2RG and k3R2B. That is the order

of the term is reflected in the power to which the exposure scaling

is raised. Clearly, and this is our key insight, taking the order-root

will result in terms which have the same k scalar: (kR)1/1 = kR,

(k2RG)1/2 = k(RG)1/2, (k3R2B)1/3 = k(R2B)1/3. For a given pth

order polynomial expansion, we take each term and raise it to the

inverse of its order. The unique individual terms that are left are

what we use in Root Polynomial Colour Correction.

The root polynomials corresponding to the 2nd , 3rd and 4th

order polynomial expansions are written below:

• (r,2); ρ = [r,g,b,
√

rg,
√

gb,
√

rb]T
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• (r,3);

ρ =
[

r,g,b,
√

rg,
√

gb,
√

rb,

3

√

rg2
,

3

√

gb2
,

3
√

rb2
,

3

√

gr2
,

3

√

bg2
,

3
√

br2
,

3
√

rgb

]T

• (r,4);

ρ =
[

r,g,b,
√

rg,
√

gb,
√

rb,

3

√

rg2
,

3

√

gb2
,

3
√

rb2
,

3

√

gr2
,

3

√

bg2
,

3
√

br2
,

3
√

rgb,

4

√

r3g,
4
√

r3b,
4

√

g3r,
4

√

g3b,
4
√

b3r,
4

√

b3g,

4

√

r2g2
,

4

√

g2b2
,

4
√

r2b2
,

4

√

r2gb,
4

√

g2rb,
4

√

b2rg

]T

Notice that the number of terms is reduced. This is because

the root operation is many to 1. For example R, R2, R3 and their

respective 1st , 2nd and 3rd roots are all equal to R. Clearly R can

only occur once in the root polynomial regression.

What we expect from the root-polynomial model is improve-

ment over the linear model for the regions where linearity is poor

(due to the types of surfaces, sensors or lights), but also, cru-

cially, elimination of the effects of non-linear magnification of

linear changes in the overall light level. Thus, we expect the

root-polynomial model to perform better than the linear model for

fixed scenes, illuminations and camera exposures, as well as for

a fixed scene and camera exposure, under changing illumination.

(Note that these predictions all assume that the camera responses

remain in the unsaturated range.)

Experiments
To compare the performance of polynomial and root-

polynomial colour correction, we performed both synthetic data

simulations and a real data experiment. As to the former, we

used the Sony DXC-930 camera sensor sensitivities [11] to in-

tegrate the spectral data from three surface reflectance datasets.

First dataset comprised 96 reflectances of the X-rite SG colour

checker (border patches excluded), the second dataset contained

180 patches of the Macbeth DC colour checker (again border

patches were excluded) and the last one 1995 surfaces collated at

the Simon Fraser University [11]. For each dataset we performed

a simulation, in which we integrated the Sony sensor sensitivities

and the colour matching functions under D65 illuminant produc-

ing corresponding sets of camera responses (RGBs) and XYZs.

Spectra calculations were carried out for 31 spectral channels -

400-700nm sampled every 10nm. Next, we built the regression

models using previously defined polynomial and root-polynomial

terms. For each of the four datasets, we performed the leave-one-

out validation i.e. we built the model using all but one of the

surfaces from the dataset and tested that model on the remaining

patch; we repeated this for all the patches in the dataset and calcu-

lated mean ∆E in the CIELUV colour space. The results of these

simulations can be seen in Table 1.

Next, for the DC and SFU datasets, we simulated an increase

and decrease in the scene irradiance by multiplying the earlier cal-

culated camera sensor responses and the ground truth XYZ val-

ues by factors 0.5 and 1.5. We used these corresponding sets of

RGBs and XYZs to test the earlier learned original scene irra-

diance polynomial and root-polynomial models. The results of

these simulations can be seen in Table 2.

Moreover, we performed a real camera characterisation. The

experimental set-up was as follows. The X-rite SG colour chart

was positioned in a dark room, illuminated with a tungsten bulb

light and imaged with Nikon D60 camera. First, we captured an

image of the colour chart and measured XYZ values of each of

the 96 patches using Photo Research PR-650 spectrophotometer.

Next, the level of the light was decreased by roughly the factor of

two using the dimmer and the image capture and patch measure-

ments were repeated (for the same camera settings). The linear

16-bit images were extracted from the camera raw images using

DCRAW program. The dark level was captured with the lens cap

on and subtracted from the camera responses. We used the data

obtained for the first lighting condition to derive a set of polyno-

mial and root-polynomial models as described in the earlier sec-

tions. The models were evaluated using the leave-one-out method

in the same manner as in the earlier simulations. The results of the

validation can be seen in the second column (fixed illumination) in

Table 3. The third column in the same table contains the results of

testing these models after the intensity of the light was decreased.

In addition, we simulated an increase in the the light intensity by

multiplying the original (first lighting condition) camera sensor

responses and the measured XYZ values by factors 1.1 and 1.2.

Again, we used the resulting RGBs and XYZs to test the earlier

learned polynomial and root-polynomial models. The results of

these simulations can be seen in the last two columns of Table 3.

Discussion
If we compare the results of the polynomial and root-

polynomial models in a fixed illumination scenario, we can

see that the root-polynomials usually outperform the polynomial

models including those of higher order. However, the difference

between the best high order polynomial models and the root-

polynomial models is not large. In Table 1, we can see that for

the DC dataset the root-polynomial model performs worse than

the polynomial, but for the smaller SG dataset and the largest and

most relevant SFU dataset, the situation is reversed.

The results from Tables 2-3 show that the polynomial models

deteriorate under change of scene irradiance/exposure condition,

whereas the root-polynomial models remain invariant. An im-

portant observation is the fact that the root-polynomial results are

always better than the results obtained for the linear model (p,1)

- the only polynomial model, which is invariant to the change of

exposure. In the experiments we report here, we simulated only

a slight increase in the scene irradiance/exposure as for the larger

increases the polynomial models fail completely, which results

e.g. in mapping camera responses to negative XYZs and con-

sequently meaningless LUV errors. However, the message from

Tables 2 and 3 as well as Fig. 1 is clear. If you carry out naive

polynomial regression to fit data at different exposures, high er-

ror can result. Conversely, the root-polynomial colour correction

works well independent of exposure.

With regard to the real camera experiment, similar trends can

be observed i.e. the root-polynomial correction performs better

than the polynomial correction in particular significantly better

than the linear and is invariant with respect to the change of illu-

mination intensity. Moreover, polynomial regression fails under

the change of illumination condition. The smaller errors for that

camera (than those for the simulated Sony sensors and the SG

chart) suggest that Nikon D60 sensors are more colorimetric than
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Table 1. Synthetic data simulation results for fixed illumination condition. The errors obtained for four datasets are given as the

mean, median and 95 percentile error in the CIELUV colour space.

dataset SG DC SFU

model type mean med 95 pt. mean med 95 pt. mean med 95 pt.

p,1 4.8 2.9 20 3.8 1.9 14 2.6 1.4 7.7

p,2 4.0 2.7 11 3.1 1.8 10 2.4 1.4 7.2

p,3 3.2 2.2 7.5 2.4 1.3 7.7 1.9 1.2 6.5

p,4 3.1 2.2 8.2 2.0 1.2 6.9 1.8 1.1 6.0

r,2 2.8 1.8 8.7 2.4 1.3 8.5 2.1 1.2 7.0

r,3 2.6 1.6 8.1 2.2 1.3 7.5 1.8 1.2 6.1

r,4 2.6 1.6 8.3 2.2 1.3 7.7 1.8 1.1 6.1

Table 2. Synthetic data simulation results for the DC and SFU dataset as the light level was decreased and increased. The errors

obtained for four datasets are given as the mean, median and 95 percentile error in the CIELUV colour space.

dataset DC decr. 50% DC incr. 50% SFU decr. 50% SFU incr. 50%

model type mean med 95 pt. mean med 95 pt. mean med 95 pt. mean med 95 pt.

p,1 3.8 1.9 14 3.8 1.9 14 2.6 1.4 7.7 2.6 1.4 7.7

p,2 3.9 2.5 12 3.5 2.2 11 2.6 1.6 8.0 2.4 1.5 7.3

p,3 3.3 1.9 10 3.5 1.5 15 2.5 1.5 7.8 2.7 1.4 9.6

p,4 3.0 1.6 11 5.0 1.8 23 2.4 1.4 8.0 2.5 1.3 8.9

r,2 2.4 1.3 8.5 2.4 1.3 8.5 2.1 1.2 7.0 2.1 1.2 7.0

r,3 2.2 1.3 7.5 2.2 1.3 7.5 1.8 1.2 6.1 1.8 1.2 6.1

r,4 2.2 1.3 7.7 2.2 1.3 7.7 1.8 1.1 6.1 1.8 1.1 6.1

Table 3. Nikon D60 characterisation results. The errors are given as the mean, median, 95 percentile and maximum error in the

CIELUV colour space.

fixed illumination illumination decreased by 50% illumination increased by 10% illumination increased by 20%

model mean med. 95 pt. max mean med. 95 pt. max mean med. 95 pt. max mean med. 95 pt. max

p,1 2.8 1.9 8.4 13.4 2.7 1.8 8.6 13.3 2.8 1.9 8.4 13.4 2.8 1.9 8.4 13.4

p,2 2.3 1.9 7.0 8.4 2.6 2.3 7.0 10.4 2.3 1.9 6.5 8.3 2.4 1.8 7.0 8.1

p,3 2.2 1.8 6.0 7.9 2.6 2.3 6.0 7.4 2.4 1.9 6.0 7.6 2.6 1.8 6.8 11.8

p,4 2.4 2.0 6.3 8.6 3.1 2.5 7.2 10.4 2.8 2.2 6.7 14 3.5 2.2 10.5 21.4

r,2 2.1 1.5 6.6 8.3 2.2 1.6 7.4 8.8 2.1 1.5 6.6 8.3 2.1 1.5 6.6 8.3

r,3 2.1 1.5 6.4 11.2 2.2 1.5 6.1 8.7 2.1 1.5 6.4 11.2 2.1 1.5 6.4 11.2

r,4 2.2 1.5 6.2 12.9 2.2 1.7 6.2 9.1 2.2 1.5 6.2 12.9 2.2 1.5 6.2 12.9

the Sony DXC-930 sensors.

Another interesting observation about the root-polynomials

is that, the results obtained for different orders are relatively sim-

ilar. Usually the largest improvement over the linear model takes

place in the second order root-polynomial by adding just three ex-

tra terms into the model. The results of the third and the fourth

order root-polynomials are very similar and only slightly better

than those of the second order. In Tables 1 and 3, we can see that

the 2nd order root-polynomial (6 terms) outperforms even 4th or-

der polynomial (34 terms) for the SG dataset and for the Nikon

camera; and is comparable to the 3rd order polynomial (19 terms)

for the DC and SFU datasets. Thus, the smaller number of terms

of root-polynomials is their yet another advantage over the poly-

nomials.

Conclusions
‘Root-Polynomial Colour Correction’ builds on the earlier

widely used polynomial models, but unlike its predecessors is in-

variant to the change of camera exposure and/or scene irradiance.

The results presented in this paper show that this algorithm al-

ways outperforms linear regression and offers a significant im-

provement over polynomial models when the exposure/scene ir-

radiance varies.
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