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Abstract
In this paper we study a local, image dependent approach to

the gamut mapping problem. A structural image quality measure
is used to pick an optimal mapping algorithm for image patches
from a given class of algorithms. The optimally mapped patches
are then fused into a single mapping of the image. We discuss and
compare two image fusion methods that are designed to avoid ar-
tifacts in the fused image. Psycho-visual experiments confirm that
this approach has a good potential to obtain mapped images with
higher perceived quality than any of the individual algorithms, on
which the method is based.

INTRODUCTION
The rendering of a color image constrained by device limita-

tions, also called gamut mapping, is a classical problem in digital

color reproduction and still an active area of research, see [1, 2]

for an overview. In recent years, research on gamut mapping al-

gorithms (GMAs) has focused (1) on spatial mapping algorithms

that map each pixel in an image, depending individually on its

neighborhood [3, 4, 5, 6], and (2) on image dependent algorithms

where the mapping take image’s inherent color distribution into

account [7, 8]. Another successful approach towards image de-

pendence has been published recently [9]: given a finite number

of gamut mapping algorithms and a suited similarity measure for

an image, the mapping algorithm that produces the mapping most

similar to the original image is chosen.

In this paper we study methods to take this approach one step

further, namely applying it locally to patches of the image or even

to individual pixels and then fusing the optimally mapped patches

into a global mapping. The success of such a method will depend

mainly on two factors: (1) a good measure to determine the op-

timal gamut mapping algorithm for an image patch or even more

generally for every pixel, and (2) an image fusion technique to

combine the mapped patches/pixels into one image of high per-

ceptual quality.

Image quality measures have been successfully used in many

imaging applications, e.g., in modeling image distortions, espe-

cially in data compression. An overview of the state-of-the-art

in image quality research can be found in [10] or [11]. A spe-

cial class of image quality measures that play an important role in

the evaluation of sophisticated gamut mapping algorithms mea-

sures the structural similarity of images, and hence can be used

for comparing modified images with their originals. Among these

measures is the frequently used Structural Similarity Index Mea-
sure (SSIM) that has been introduced in [12].

Image fusion is the process of combining two or more im-

ages of the same object into one extended composite image [13].

In general, several problems have to be solved for successful im-

age fusion: registration, matching dynamic range, and smooth,

artifact-free combination. Typical applications of image fusion

are the construction of high dynamic range (HDR) images based

on a set of exposures [14], or the combination of IR-images with

visual color images [15]. The first approach using image fusion

in the domain of gamut mapping has been published by [16]. In

gamut mapping registration is not a critical issue. The challenge

here is the smooth and artifact-free transition between regions

mapped by different algorithms.

The goal of this paper is to explore the feasibility of locally

optimal gamut mapping using image quality measures and image

fusion. Here we use an extended version of SSIM as image quality

measure and investigate two methods for the image fusion part.

The results are judged and compared in a psycho-visual test.

METHODOLOGY
General concept

Conceptually, we devise a meta-algorithm which selects for

every image pixel of an original image O an optimal mapping

from a set of basic gamut mapping algorithms GMAi, i = 1, . . . ,n.

The meta-algorithm comprises the following three steps:

(1) All pixels of the original image O are mapped by all gamut

mapping algorithms GMAi.

(2) For every pixel the optimal mapping is selected by optimiz-

ing the similarity between the neighborhood of the origi-

nal and the mapped pixel. The result is a set of n similar-

ity maps Simi describing the similarity between the original

patch centered at pixel j and its mapping with GMAi. Note

that this means that Simi assigns a similarity score to every

pixel for the algorithm GMAi.

(3) An image fusion method is used to combine the optimally

mapped pixels into a single smooth image R. The main chal-

lenge here is to avoid artifacts at patch boundaries, or more

generally image parts, that have been mapped with different

gamut mapping algorithms.

In this paper we focus on the third step of the of meta-

algorithm, the image fusion. For the first two steps we use state-

of-the-art gamut mapping algorithms and an extended version of

the structural similarity image measure SSIM [12]. We also re-

strict ourselves to pixel centered neighborhoods that provide us

with similarity maps Simi, i = 1, . . . ,n for every base algorithm.

The meta-algorithm is summarized in Figure 1.

In particular, we study two fusion techniques, one based on

image segmentation and the other based on a bilateral filter. De-

tails are described in the following three subsections.
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Figure 1. General concept of the construction of a meta algorithm using

a set of basic gamut mapping algorithms

Gamut Mapping Algorithms
For this paper we chose four gamut mapping methods to

serve as base algorithms. Note, that the focus here is not to in-

clude or exclude a specific algorithm. The importance for the po-

tential success of the fusion method is, that the chosen algorithms,

though different from each other, provide overall comparable per-

ceived quality. The chosen algorithms, that all go beyond pixel-

wise mapping and include some spatial mapping features, are the

following (the first two are based on the reference algorithms de-

scribed in the guidelines for the evaluation of gamut mapping al-

gorithms [17] with subsequent contrast recovery [4]):

• GMA1: Hue preserving minimum distance clipping (HP-

MinDE) using CIELAB as working color space with sub-

sequent contrast recovery.

• GMA2: Chroma-dependent sigmoidal lightness mapping

and cusp knee scaling (SGCK) using IPT [18] as working

color space with subsequent contrast recovery.

• GMA3: An implementation of the multilevel algorithm [6]

using CIELAB as working color space. This algorithm is

based on mapping different frequency bands of the images.

Special emphasis is put on hue preservation and the avoid-

ance of artifacts (halos) and over-compression.

• GMA4: An algorithm [19] using IPT as working color space,

that first performs a chroma-dependent gray axis transform.

The input image is then split into a low frequency and a

high frequency part using a Gaussian filter. The low fre-

quency part is clipped to the target gamut, and then the high

frequency part is added back. The result is clipped again to

ensure that all colors are in the target gamut.

Structural Similarity
We determine the optimal mapping for an pixel from its

neighborhood (here 9× 9 pixel centered patches) using a struc-

tural image similarity measure, providing us with a similarity map

Simi for every base mapping algorithm GMAi (see Step 2 of the

meta-algorithm). The structural image similarity measure is an

extension of the SSIM measure which is defined for one chan-

nel only, typically the lightness channel, and consists of two basic

factors, one responsible for average lightness differences, and the

other for contrast and structural differences. However, we also

want to have the possibility to consider color related similarities

in particular hue. Therefore we extend the SSIM measure by an

additional factor for hue shifts. We do not consider structural cor-

relations in hue since the perception of structural information is

mainly governed by lightness. In order to derive a meaningful

hue measure, a hue preserving color space has to be used. Here

we use the IPT color space [18] which is known to have good

hue preserving properties. Hence, we apply the standard SSIM

formula to the lightness coordinate I of the IPT color space. The

standard SSIM formula [12] reads as follows (note that x always

refers to pixels in the original image and y to pixels in the mapped

image):

SSIM(x,y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x +σ2

y + c2)
, (1)

where μx is the average of the luminance values I in the patch

centered at x, σx is the standard deviation of these values, σxy is

the correlation between luminance values in the patch centered at

x (before mapping) and the values in the patch centered at y (after

mapping), and c1 and c2 are constants. For hue differences we use

the following similarity factor

h(x,y) =
1

c3 ·ΔH(x,y)2 +1
(2)

with constant c3. In the IPT color space hue differences ΔH can

be calculated from the chroma coordinates P and T as follows:

ΔH =

√

(Px −Py)2 +(Tx −Ty)2 −ΔC2 , (3)

where

ΔC =
√

P2
x +T 2

x −
√

P2
y +T 2

y . (4)

The extended structural similarity measure now assigns to every

pixel x in the original image and pixel y in the mapped image the

following similarity score

SSIM+(x,y) = SSIM(x,y) ·h(x,y). (5)

The parameters c1 = 1.0 and c2 = 9.0 are chosen as in [12]. The

parameter c3 = 0.05 is optimized on an image with many sat-

urated blue colored pixels. Since we can assume, that all base

gamut mapping algorithms optimize chroma in similar ways, it

seems not appropriate to introduce also a chroma factor in the

similarity measure.

Using the SSIM+ measure we obtain four similarity maps

Simi, one for each of the base mapping algorithms. Figure 2

shows an example of the four (scaled) similarity maps.
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Figure 2. Similarity maps Simi for the for four base algorithms GMAi, i =

1, . . . ,n. At light pixels the similarity is high, and at dark pixels the similarity is

low. To improve the readability of the visualization the lightness of the images

has been scaled.

Image fusion
The most simple approach to image fusion in our setting

would be to map every pixel j with the algorithm GMAi, i ∈
{1, . . . ,4} such that

i = argmaxk=1,...,4simk j (6)

where simk j is the value for pixel j in the similarity map Simk.

However, this approach results in unwanted artifacts. A typ-

ical example for an image resulting from this fusion approach is

shown in Figure 4 (top). Hence, the challenge is to find a better

fusion scheme that avoids such artifacts, but still provides a close

to optimal mapping in every part of the image. In the following,

we describe two fusion schemes, one based on segmentation, and

the other based on bilateral filtering of weighted maps computed

from the similarity maps.

Segmentation
The image fusion process using segmentation is summarized

in Figure 3. Input to the segmentation based fusion algorithm are

the similarity maps Simi for the mapping algorithms GMAi that

assign a similarity score to every pixel of the image O that has to

be mapped, and a state-of-the-art image segmentation method that

will be applied to O. For the segmentation we use an implementa-

tion1 of the algorithm described by [20]. This algorithm has three

parameters that we need to set: (1) a parameter σ that controls

a smoothing of the input image before segmentation, (2) a value

k that is used for thresholding, and (3) the minimum component

size min enforced in a post-processing step. We use the follow-

ing parameter settings σ = 0.5, k = 500 and min = 1000. Note

that the value for min was chosen higher than the recommended

default value because for us it is important to avoid very small

segments.

From the similarity maps an index map can be computed that

assigns to every pixel in O the index of the mapping algorithm

that achieves the highest similarity score on this pixel. See the

top right image in Figure 3 for a visualization of an index map,

where the index values have been encoded by grey level values.

1see http://people.cs.uchicago.edu/∼pff/segment/
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Figure 3. Fusing mapped images based on a segmentation of the original

image.

The top left image in Figure 3 shows the segmentation of the orig-

inal image O, where the different segments have been encoded by

different colors. For every segment in the segmentation of O we

select the algorithm GMAi such that the majority of the pixels in

this segment are mapped by the index map to index i, i.e., GMAi
achieves the highest similarity score on more pixels of the seg-

ment than any other mapping algorithm (where ties are broken

arbitrarily). This results in a smoothed index map—an example is

shown in the image at the bottom of Figure 3.

A typical result of the mapping process after image fusion

using the segmentation approach and the similarity maps for our

four base algorithms is shown in the bottom image in Fig. 4. Note

that the artifacts induced by the naive fusion scheme (see top im-

age in Fig. 4) have vanished.

Bilateral Filter
The image fusion process using a bilateral filter is summa-

rized in Figure 5.

In the segmentation approach we use an index map that as-

signs exactly one—the winning—index to every pixel. Now we

want to consider all mappings at every pixel by weighting their in-

fluence using the similarity maps Simi for the mapping algorithms

GMAi, i = 1, . . . ,n. Let

μ j =
1

n ∑
i

simi j. (7)

be the average similarity score of the mapping algorithms at pixel

j computed on a patch centered at j. We define a weighting map
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Figure 4. Fused image based on the segmentation approach (bottom)

compared to fusion without smoothing (top)
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Figure 5. Fusing mapped images using bilateral filtering.

Wi for every mapping algorithms GMAi that assigns to every pixel

j the weight wi j that is given as follows

wi j =
max(simi j −μ j,0)

∑n
k=1 max(simk j −μ j,0)

, (8)

i.e., all similarity scores below μ j are set to zero and the sum of

the weights for the different mapping algorithms at pixel j are

normalized to 1. Typical weighting maps are shown as images in

the top row of Figure 5.

In a next step the weighting maps Wi are smoothed by us-

ing a bilateral filter resulting in smoothed weighting maps Ŵi that

assign the following weight to pixel j,

ŵi j =
∑k wik · f jk

∑k f jk
. (9)

Here f jk is a bilateral filter kernel of the form

f jk = e−((ΔS
jk/σs)

2+(ΔC
jk/σc)

2), (10)

where ΔS
jk is the spatial distance of the pixels j and k, ΔC

jk is their

color distance in the original image, and σs and σc are param-

eters defining a spatial reference distance and a color reference

distance, respectively. In our experiments we use σs = 5% of the

image diagonal and σc = 20.

Finally, in order to increase the separation of the differ-

ent mapping algorithms the smoothed weights are modified once

more by increasing the global contrast as follows

w̄i j =
tanh(gc · tanh−1(2ŵi j −1))+1

∑n
k=1 tanh(gc · tanh−1(2ŵk j −1))+1

, (11)

where gc is a parameter that controls the amount of contrast en-

hancement. In our experiments we use gc = 2. This results in

contrast enhanced weighting maps W̄i for every mapping algo-

rithm GMAi. Typical weighting maps W̄i are shown in the images

in the bottom row of Figure 5.

The weighting functions W̄i can now be used in a straight-

forward manner to fuse the images obtained from the different

mapping algorithms by interpolating the different mappings pixel-

wise using the weights w̄i j .

EXPERIMENT
Test Setup

In order to test the visual performance of the meta-algorithm

and especially the two fusion schemes that we have discussed be-

fore, we have set-up a psycho-visual test with the following prop-

erties:

Test method. We used a pair comparison test where an origi-

nal image and two mapped images were presented to an observer.

For every pair comparison the orignal image and simulation of

two mapped images were shown on the same screen. The ob-

servers had to select the mapped image that represents the origi-

nal image better. An observer could also state, that both mapped

images were equally good.

Laboratory setup. The test images were shown on a 22”

Eizo CG 220 LCD monitor that had been calibrated to show

sRGB-colors. The luminance of the monitor white was 120cd/m2

and the ambient light at 20 − 40lx. Monitor flaps around the
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screen were used to prevent flare. The monitor’s background was

set to a neutral gray.

Image selection. We used an image set that contains im-

ages representing a wide variety of natural scenes. The image

set also included the obligatory ski image as specified in the CIE

156:2004 guidelines [17]. In total 36 different images were used

in the experiment. One of the images was excluded from the fi-

nal evaluation, because it was used to optimize the hue parameter

for the SSIM+ measure (see the earlier discussion of the SSIM+

measure). The images from the test set are shown in Figure 6.

Empa, , 

Figure 6. Test images

Observers. Ten observers (four female and six male) par-

ticipated in the test. All observers had passed the Ishihara test

for color deficiencies. The observers participated in four to six

test sessions each consisting of 90 comparisons. All in all 5130

comparison have been made.

Algorithms. The following mapping algorithms were com-

pared: the four base algorithms GMA1, GMA2, GMA3, GMA4,

and two instances of our meta-algorithms based on the two differ-

ent image fusion schemes FusionS (segmentation) and FusionB
(bilateral filter). For the test, we used a work-flow for mapping

images from sRGB to offset CMYK on uncoated paper2. The

choice of a rather small target gamut provides us with significant,

visible differences among the four base algorithms, and such that

artifacts induced by the image fusion step should be perceptually

more significant than for larger target gamuts.

Computational complexity. The computation time of the

fusion process itself is comparable to that of a typical single algo-

rithm in our set of base algorithms. The main task is a bilateral

filter (as in GMA1 or GMA2) or a segmentation method. Thus

for our selection of base algorithms the total computation time is

about five time that of an average single GMA. Note that an op-

timization of computation time was not the primary issue of this

research.

Results
The visual performance of an additional meta-algorithm [9]

MaxSSIM+ was computed from the user data. This algorithm picks

2Using the ICC-Profile ’Isouncoatedyellowish.ICC’ from
www.eci.org

the best base algorithm for an image using the structural similarity

measure SSIM+. The data were evaluated using Thurstone’s Case

V model [21]. Results are shown in Figure 7. The error bars

indicate one estimated standard deviation.
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Figure 7. Psycho-metric scaling results showing relative performance of

the four base and the three meta-algorithms. The error bars indicate one

estimated standard deviation.

The result shows that generally the three meta-algorithms

FusionS, FusionB and MaxSSIM+ perform better than the four

base algorithms. The results for MaxSSIM+ are in line with the re-

sults that have been published in [9]. The performance of the seg-

mentation based fusion technique FusionS is slightly better than

that of MaxSSIM+ , but this result is not statistically significant.

The bilateral filter based fusion technique FusionB performed best

and this is a statistically significant improvement over each of the

four base algorithms.

DISCUSSION
The results of our psycho-visual test show that locally op-

timized gamut mapping has the potential for significant improve-

ments of gamut mapping algorithms. Even if one of the base algo-

rithms performed significantly better than the other three, a closer

look into the data revealed that any of the four base algorithms ob-

tained above average psycho-metric scale values for at least one

of the test images. The same is true, if the algorithms are judged

using SSIM+ as a measure. Hence, we can assume that every base

algorithm had a positive contribution to the images mapped with

the meta-algorithm.

The presented meta-algorithm performed well in our test but

it is still far from being optimal. Potential for further improve-

ments can be found in all three steps, (1) the selection of the base

mapping algorithms, (2) the structural similarity measure, and (3)

the fusion method.

Especially, the structural similarity measure needs more at-

tention for further improvement of the gamut mapping quality.

The presented measure is far from being perfect: the parameters

to control the hue deviation were optimized only at a very basic

level and chroma deviations were not considered. The role of hue

and chroma preservation in extensions of the SSIM structural sim-

ilarity measure is still an open research question, as is the question

whether it is sufficient to consider structural information only on
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the lightness channel.

Note, that the goal of finding a perfect measure is probably

unattainable. If such a measure would be known, a gamut mapped

image could in principle be optimized directly by optimizing this

measure, however most likely by incurring large computational

costs. Hence, it is still interesting to manually investigate opti-

mized gamut mapping algorithms in combination with incomplete

similarity measures for further improving gamut mapping.

Both fusion techniques that were discussed have the poten-

tial for further improvement. One weakness of the segmentation

technique is that in some images artifacts are visible when the

segmentation does not match with a natural segmentation of an

image. If such images could be detected automatically—for ex-

ample using an appropriate automatic artifact detector—the per-

formance of the mapping algorithm could be improved.

Finally, some of the parameters in the bilateral filtering tech-

nique can be optimized further. In particular, the contrast en-

hancement parameter gc is critical. A small value (close to 1)

tends to average out the algorithms, thus tending to produce also

only average quality. A high value on the other hand will produce

artifacts because the transition from one algorithm to another al-

gorithm may not be smooth anymore, especially in image regions

with no clear edges.

The strength of the presented concept is, that even with an

imperfect similarity measure and a set of simple base mapping al-

gorithms the fused mapping of images provides a significant im-

provement of the perceived mapping quality.

CONCLUSIONS
We have shown that the fusion of locally optimal gamut

mapped images has the potential to increase the perceived qual-

ity of the mapped images significantly. Further improvements can

be expected for both, the selection of an optimal mapping for an

image region as well as for the optimization of the image fusion

technique.

In this work we used a similarity measure to select an optimal

mapping for an image region, however, the selection could also be

based on a large data base of suitable user preference data.

Another direction of future research could be optimizing the

parameters employed in the fusion techniques based on the qual-

ity measure that has been used for the local selection of the base

gamut mapping algorithm.

The proposed fusion techniques can be applied also to other

imaging problems such as locally optimized image enhancement.

In the latter application the set of base mapping algorithms would

be replaced by a set of image enhancement algorithms and the

structural similarity measure by a non-reference image quality

measure.
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