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Abstract 

There is compelling, largely agreed-upon evidence that the 
CIE Color Rendering Index (CRI) is not a sufficiently accurate 
measure of the average color rendering difference between two 
different spectral irradiance distributions.  This has become 
particularly evident with the consideration of white light sources 
employing several narrow band light emitters.  In this presentation 
an approach is suggested for reducing the error, based on 
consideration of certain meta-standards for evaluation of proposed 
CRI calculation methods.  Here we focus mainly on one such meta-
standard –the idea that the spectral sensitivity of the CRI should be 
reasonably uniform and largely independent of the details of the 
selected sample set.  A key problem with the current CRI 
calculation method, and some suggested improvements, has been 
their lack of this important characteristic.  By employing this 
guiding principle, we have devised an improved sample set that 
substantially eliminates the problem of non-uniform spectral 
sensitivity. 

Introduction 
This paper concerns an important component of the CIE 

Color Rendering Index (CRI) – the calculation of the average color 
rendering difference between two spectral irradiance distributions.  
The calculation method used in the current CRI has known 
inaccuracies.  One is that the color space employed is out of date.  
Others have made excellent suggestions for solutions to this 
problem; these need not be discussed further here.   

We focus on the problem of the selection of the set of sample 
spectral reflectance distributions that are employed within the CRI 
calculation.  The set currently used is shown to have serious 
problems that cause inaccuracy and we discuss the development of 
a new set that is free of this problem. 

In order to understand this development, a reader should be 
familiar with the background concepts of chromaticity, 
metamerism, uniform color spaces and color rendering.  It is 
impractical to review them here, but the information is available in 
a wide variety of readily available reference texts [1]. 

Errors in evaluating color rendering difference 
It is well known that evaluation of the average color rendering 

difference between two spectral irradiance distributions uses two 
largely independent mathematical components: 
• a set of defined colored reflectance samples with known 

spectral reflectance distributions – we will call this here the 
“sample set” for short; and 

• a color difference calculation and averaging algorithm that 
calculates the color difference (between the two illumination 
states) for each of the samples, and then calculates an average 
value of these differences – here we will call this the 
“calculation engine” for short.  

In the CRI, the current versions of each of these components 
introduce problematic errors [2-5].  The most readily addressed 
part of the problem involves the calculation engine.  The current 
CRI uses an outdated color calculation system.  Fortunately, there 
is little difficulty in using a more modern calculation engine.  
Based on a proposal from the group of Luo, Schanda et al. [6], one 
may update the engine to use modern color space and r.m.s. 
averaging instead of arithmetic averaging.  This improvement 
seems not to be contentious, although certain minor outstanding 
matters may still need to be addressed. 

The other component – the sample set – is more problematic 
and is the primary subject of this paper.  Various parties have 
claimed that the previous sets of 8 and 14 samples used in the CRI 
are inadequate and suggested a different small set of real samples.  
Alternative proposed sample sets have been selected so that their 
chromaticity coordinates form a regular pattern in color space [7].  
However, uniformity in color space does not in general transfer 
into a set of spectra with uniformly distributed spectral features.  
This was probably known by the experts who designed the CRI, 
but at the time, in the pre-computer era, there was no alternative.  
Fortunately, also, most of the light sources at the time had spectra 
with relatively broad features for which the resultant error was 
tolerable.   

To study these ideas more carefully, it is helpful to consider 
the idea of the responsiveness of the CRI score to localized 
spectral features.  Here we will call this idea the “spectral 
sensitivity” of the CRI calculation. 

Spectral sensitivity of CRI   
As an initial example, consider two illuminant spectral 

distributions, as follows:  Spectrum (a) is a 4500K Planckian and 
Spectrum (b) is the same function, but multiplied by  
(1+k( p(λ−δ))) where k  is a perturbation coefficient, δ  is a spectral 
offset value that can be adjusted and p is a smooth, symmetrical 
perturbation function that integrates to 0, is zero outside the 
“perturbation zone” within ±Δ , and has a maximum magnitude of 
1.0 within the perturbation zone.  Figure 1 compares the two 
spectra – they are the same everywhere except within the 
perturbation zone, the location of which can be shifted 
continuously along the visible spectrum.  Within the perturbation 
zone the two spectra differ, but the total amount of light is 
unchanged – it is simply more intense near the center and less 
intense near the edges. 

Now consider what happens when these two spectral 
distributions illuminate test samples, as is done notionally in the 
color rendering difference calculation.  As one might expect, the 
average color rendering difference is proportional to k; in other 
words the ratio of average color difference to k has a constant 
value, which we will call the sensitivity of the color rendering 
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difference.  However the constant of proportionality will generally 
be a function of the central wavelength, δ, and will depend on the 
particular perturbation function used. 

 
              Spectrum (a)                                        Spectrum (b) 
Figure 1.  Comparison of perturbed (b) to the original (a), in this example a 
4500K Planckian  

It is helpful to consider how this sensitivity to perturbation 
varies as the central wavelength is shifted across the visible 
spectrum.  We would expect this functional relationship to have a 
smooth character that represents, in some complex manner, the 
underlying spectral response characteristics of human vision, while 
also depending on the particular selected perturbation function 
p(λ−δ)).  Thus we would generally expect the spectral sensitivity 
function to be fairly smoothly distributed across the visible 
spectrum, and that it would not be critically dependent on specific 
details of the particular reflectance samples used. 

It is helpful to consider how this idea constrains the selection 
of the reflectance sample set.  Specifically, let us consider how 
individual test samples contribute to the overall spectral sensitivity.  
The reflectance values of a test sample, for wavelengths lying 
outside the “perturbation zone”, are irrelevant because at those 
wavelengths the two illuminants are identical.  Further, if the 
reflectance sample has uniform reflectance within the perturbation 
zone, there will be little difference between the two illumination 
states because the perturbation function averages to zero.  It is even 
true that a linear gradient in the test sample reflectance will yield 
little color difference, because of the symmetric shape of the 
perturbation function.  Therefore, what is required to generate a 
significant color difference for the sample, between the two states 
of illumination, is curvature in the plot of reflectance vs. 
wavelength, within the perturbation zone. By curvature, we mean 
the magnitude of the second derivative of the function R(λ). 

 

 
Figure 2. The average magnitude of curvature for the 8 basic CRI reflectance 
samples. 

To help make this clearer, consider the 8 samples that are 
used in the basic CRI calculation.  Figure 2 shows the average 
magnitude of curvature of these 8 spectra, (which have first been 
smoothed with a 20 nm rolling average, to reduce the influence of 
noise in the data).  The resultant arithmetic average is very non-
uniform, with the shape determined by the arbitrary spectral details 
of the individual reflectance samples.  If we were to replace each 
of the 8 samples with a different, but metameric sample, the 
sensitivity curve in Figure 2 would be quite different – it therefore 
is not representative of human vision. 

The resultant error in the CRI is large for LEDs and also for 
the narrow-band spectral perturbations that lamp manufactures 
may soon wish to consider as quantum dot phosphors become 
available.  For this reason, this is now a major problem. 

We have concluded that it is impossible to find a small 
number of real reflectance samples that will yield a suitably 
smooth spectral sensitivity response.  However, there is good 
reason to hope that using a large number of samples could reduce 
this problem, because features from individual spectra should tend 
to average out statistically. 

Finding a large data set that has sufficiently 
uniform results 

From this perspective, a very important resource has recently 
been available to the scientific community – the Leeds 100,000 set 
of measured spectral reflectance distributions of real samples of all 
kinds of natural and artificial surfaces [8].  Before this set was 
available, there was insufficient data to enable the work described 
here, and only fairly recently has this work become 
computationally practical. 

One possible use of this new set could be simply to select a 
manageably sized subset of spectra from it.  From simple statistical 
considerations, we have estimated that about 1000 spectra could be 
enough to yield a sufficiently uniform spectral sensitivity.  
However, there are two significant problems in this regard: 

First, it would not be enough to simply carry out a random 
sampling of the Leeds set, because that data was not selected with 
the goal of uniformly representing the vast space of possible 
reflectance distributions.  For this reason, in discussion with a 
number of color experts, it has generally been agreed that a more 
reasonable weighting would be to select spectra whose color 
coordinates are fairly uniformly distributed in the color volume 
within L*a*b* space.   

We tried such a sampling and discovered a second, more 
subtle problem.  Such a selection did not substantially reduce the 
problem of non-uniformity of mean curvature depicted in Figure 2.  
At first this seemed surprising, because for independent entities 
one generally expects the magnitude of the average of random data 
to decrease with the inverse square root of the number of samples.  
In this case this would mean that non-uniformities shown in 
Figures 2 should be reduced by a factor of about (8/1000)^.5, 
which is 0.09.  But as shown in Figure 3, clearly that is not the case 
for the basic Leeds samples, depicted in the curve labeled “1000 
Non-hybrid Leeds samples”.  We believe the reason for this result 
is that the Leeds samples are not mathematically independent, 
which is not surprising since there is no reason they should be, 
because most colored surfaces are composed of various ratios of a 
reasonably small set of common dyes.  These dyes have numerous 
spectral features in fixed locations that will contribute to curvature 
at the same wavelengths in the spectrum, so averaging of large 
numbers of them would not result in very much statistical 
averaging. 
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An alternative approach that has been considered is to use 
mathematically generated reflectance spectra made by a random 
algorithm that treats all spectral locations equivalently – a so-
called “Monte Carlo” approach [9]. This would solve the spectral 
non-uniformity problem, but unfortunately it would introduce 
another problem:   We could not be sure that such generated 
spectra would contain sufficiently “natural” shapes.  It would be 
better, if possible, for the spectra to containing only spectral 
features that are found in real samples, and for those features to 
have approximately the same frequency distribution as found in 
real samples. 

 
Figure 3.  The average magnitude of curvature is not improved by using 1000 
Leeds samples. 

Considering this, we have found a solution that adapts the 
Leeds spectra in a hybrid, composite manner, as follows: 
• The first step was to select, from the Leeds 100,000 set, 

10,000 spectra with approximately uniform density in L*a*b* 
space.  The purpose of this is to reduce selection bias in 
sampling spectral features.   

• These spectra were then truncated to the range 450 nm to 700 
nm, because some artefacts were noted in some of the spectra 
outside this range. 

• Using these 10,000 selected spectra, we carried out the 
following steps in each of 1,250 independent cycles: 
• First, a spectrum was randomly selected from the 10,000 

spectra subset, as a “seed”. 
• Next, a spectrum was selected for which the starting 

slope and starting reflectance best matched the end slope 
and reflectance of the seed, and was “stitched” onto its 
end.  This provided a smooth, fairly continuous, natural 
looking connection. 

• This match/stitch process was repeated three times, 
producing a continuous spectrum long enough for the 
sampling operation described next: 

• Selected spectral subsets were copied, to populate in 
5nm intervals, the range 380 to 780 nm (81 values) in an 
output file.  This was done 80 times, and on each 
successive sampling, the sample interval was shifted by 
5nm intervals.  This ensured that every wavelength was 
treated the same as every other.  In this way 80 full 
spectra were created for each of the 1,250 stitched 
spectra.  This yielded 100,000 final hybrid stitched 
spectra. 

• Each of these spectra was slightly smoothed by carrying out a 
20nm rolling average, which did not change spectral shapes, 
but removed any discontinuity in curvature at the connection 

points.  The resulting spectra look very “natural” and indeed, 
all of the features are “real”. 

• This final set of 100,000 spectra was then used for the 
selection of the sets of hybrid spectra, as follows: 

• For each of the 100,000 spectra, the local density was 
estimated by counting the number of a random subset of 100 
of these spectra that were located within a DE distance of 20 
units in L*a*b * space.  Rather than using a discrete 
boundary, a Gaussian weighting was used, to give smoother 
and non-zero values for all points. 

• A selection probability was calculated for each point, in order 
to achieve a uniform selection density in L*a*b * space while 
ensuring reasonable diversity in multiple selections.  By 
experimentation we found it best to set the selection 
probability to the minimum of 0.05 and .0038 divided by the 
number of 20nm neighbours.  This created a good uniform 
distribution in L*a*b * space with no unusual discontinuities 
and good coverage of the color volume. 

• 16 independent random selections were carried out to select 
16 different subsets of 1,000 spectra.  Averaging the 16 sets 
allowed accurate determination of the corresponding spectral 
sensitivity functions, and we selected as our final set the 1000 
spectrum set that had results closest to the mean of the 16.  

As shown in Figure 3, the curvature distribution is much 
smoother, as expected, for the resultant set of 1000 Hybrid Leeds 
Samples.  Importantly, and not surprisingly, the stitched hybrid 
spectra have the same “look and feel” as the original Leeds spectra 
from which they are formed, as compared in Figure 4. 

   

            24 of 1000 Leeds spectra             24 of 1000 Hybrid Leeds spectra 
Figure 4.  Comparing 24 randomly selected spectra from the original Leeds 
set and from the hybrid stitched Leeds spectra generated from the original 
Leeds set. 

Although there is no practical difficulty in using 1000 spectra, 
nevertheless some feel this number is too big.  Therefore, having 
developed a good spectral set, it is reasonable to try to find a way 
to reduce the number of samples without adding unacceptable 
error, using the Hybrid 1000 sample as a guide. 

Designing a smaller spectral set that 
maintains reasonable uniformity 

One way of obtaining spectral uniformity would be to have a 
fairly smooth spectral feature shift, from one sample to the next, 
through the spectrum. Figure 5 shows the general form that we 
have studied in detail.  We settled on this by first optimizing with a 
larger number of free parameters using a general polynomial 
model, and the general trend seemed to be toward a shape of the 
form shown.  For this reason we decided to optimize, with greater 
precision, using this model which has only a few adjustable 
parameters.  We varied the forward slope, the rear slope, the width 
of the non-curved fraction of the slope, the minimum and 
maximum reflectance and the spacing of samples across the 
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spectrum.  Our goal was to find a minimal simple sample set that 
emulates the 1000 samples set with sufficient accuracy. 

In so doing, there was also a question of whether we should 
include in the sample spectra that are complementary in the sense 
that they would equal the difference between unity and the value of 
the primary spectrum shown in Figure 5.  This would allow bright, 
saturated purple samples, for example.  Generally, the graphs of 
such functions would have an opposite appearance in that they 
would have a trough of low reflectance in a surrounding of high 
reflectance, rather than a peak of high reflectance in a surrounding 
of low reflectance.  Although intuitively this seemed like a good 
idea, we found that in fact it did not make any significant 
improvement to the quality of the fit to the larger set.  This is not 
particularly surprising, given the nature of the mathematical 
calculations involved.  Overall, since using such a complementary 
set would double the number of samples but provide no practical 
benefit, we decided not to do so, in recognition of the desire for 
simplicity. 

 
Figure 5.  The test mathematical generator spectrum.  The general form of 
the function is an asymmetrical triangle with slope width wl on the left and wr 
on the right, reflectance ranging from Rmin to Rmax , and with quadratic 
rounding applied at the corners leaving a fraction of the slope, 1-s, uncurved. 

We did however find a different factor that we concluded 
needed to be taken into account.  In studying the Hybrid 1000 set, 
we found that the average reflectance of the 1000 samples 
increases gradually with wavelength throughout the spectrum.  
Presumably this is due to the fact that the color volume in L*a*b* 
space has a somewhat irregular shape.  We found that if we adjust 
the mathematically generated sample set to correspondingly 
increase across the spectrum, the quality of the fit improved, from 
very good to excellent. 

In these studies, we used a computer optimization algorithm 
to find the best match between the results from the proposed 
smaller test set and those for the Hybrid Leeds 1000 sample set.  In 
doing so, we considered the match in spectral sensitivity (which 
we found to be the most stringent criterion), the match in the Ra 
calculations for 53 common reference lamps (a somewhat less 
stringent criterion), and human observation of color rendering 
difference observations (the least stringent criterion because of the 
relatively large spread of values in existing data).  We found that 
quite good results were possible – essentially no information is lost 
in using this vastly smaller, but mathematically regular, spectral 
set.  

Our resultant spectral set consists of only 17 spectra.  We call 
this the “HL17” set to designate it as 17 spectra emulating the 
Hybrid Leeds 1000 set.  The design parameters (as defined in 
Figure 5) have the following values:  wl=wr=100nm, s=0.5, Rmin = 

0.01 and Rmax = 0.5 + 0.001nm-1 * (λc-550nm).  (This last term 
provides the gradual increase in reflectance with wavelength 
mentioned above.)  The centers of the distributions increment, 
from one sample to the next, in 16 intervals of 25nm, starting with 
the first at 350nm and ending with the last at 750 nm.  The end 
points of this spectral series were selected to include all, and only, 
spectra for which the luminous reflectance exceeded, by 0.001, that 
of a spectrally uniform reflector reflectance 0.01.  This was 
determined to be a good cut-off, by checking that samples with 
lower values had negligible effect on the overall results.  Of these 
parameters studied, the only two that were really critical were wl 
and wr; these were constrained quite tightly by the optimization 
process.  Although the others were not as tightly constrained, they 
all needed reasonably careful adjustment to get the best overall fit.  
In particular, Rmin was quite sensitive.   

Figure 6 shows the plot of these 17 spectra.  They can be 
labeled by an integer i which ranges from 1 to 17.  Each sample 
function has a defined central wavelength λci given by λci  = 550nm 
+ 25nm * (i -9).  (Thus λci has a value of 350 nm for sample #1, 
550 nm for the central sample #9 and 750 nm for the last sample 
#17, with the increment from one sample to the next being 25nm.)  
Each sample function has a peak reflectance Mi given by Mi  =  0.5 
+ 0.001nm-1 * (λci – 550nm) .  (Thus Mi has a value of 0.3 for 
sample #1, 0.5 for the central sample #9 and 0.7 for the last sample 
#17.) The formula for the reflectance values depends on the value 
of ABS(λ – λci), in four distinct ranges, as follows: 

A) If ABS(λ – λci) ≥ [125nm] : 

     R(λ)=[0.01] 

B) If [125nm]>ABS(λ –λci)≥[75nm] :  

    R(λ)=[0.01]+(Mi–[0.01])*
nm

125nm]  –  

C) If [75nm]>ABS(λ  – λci)≥[25nm] :  

    R(λ)=[0.01]+(Mi–[0.01])*
nm

 –  

D) If [25nm]>ABS(λ  – λci) :   

    R(λ)=[0.01]+(Mi–[0.01])* 1
nm

 –  

 

Figure 6.  The HL17 set of spectra developed to emulate the 1000 Hybrid 
Leeds spectra for the purposes of calculation of average color rendering 
difference between two illuminant spectral distributions.  One of the spectra is 
shown in bold, as an example. 
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Because of the mathematical form of these spectra and the 
values selected, the average magnitude of the curvature of these 
spectra is quite uniform, which as described previously is a 
valuable characteristic that would not be possible with any small 
set of naturally occurring spectra. 

It is also interesting to consider the calculated L*a*b* values 
for these spectra.  They are shown in the three plots in Figure 7, for 
a D65 illuminant.  To help evaluate the appropriateness of their 
locations, the plots include an overlay of the chromaticity points of 
the 1000 Hybrid Leeds set.  The optimized HL17 spectra demark a 
path that seems reasonably representative of the larger spectra set. 

As mentioned earlier, one of the primary criteria in designing 
the spectral set was to accurately match the CRI results for the 
1000 Hybrid Leeds set.  Additionally, our goal was to match the 
spectral sensitivity functions mentioned previously.  In making that 
comparison, we used two different sizes of perturbation function, 
one with a value of Δ of 20nm, and another with a value of 40nm, 
and we perturbed three different spectra, a 3000K Planckian, a 
4100K Planckian and a 6500K Daylight spectrum.  The nature of 
the fitting exercise was similar in all cases, so for simplicity here 
Figure 8 shows the results for the average of all six combinations. 

 
   b* vs. a*                          L* vs. a*                              L* vs. b* 

Figure 7. Distribution of the HL17 spectral set under D65 illumination in 
L*a*b* space. Overlayed on these plots are the colors of the 1000 Hybrid 
Leeds spectral set. 
 

 
 
Figure 8.  Plot of the average sensitivity of the CRI to small spectral 
perturbations, as a function of the central wavelength of the perturbation. The 
HL17 set matches the sensitivity of the Hybrid 1000 set well.  In contrast, the 
results for the CRI sample set and a non-hybrid 1000 sample set match 
poorly.  

The characteristic that may be of more immediate interest to 
the lighting industry is the results when the new spectral set is used 
to calculate Ra values for common light sources.  The following 
Figure 9 compares the results of using the proposed new CRI 
calculation engine, for the different spectral sets described above. 

Probably the most important conclusion from Figure 9 is that 
the fit of the new “HL17” spectral set to the Hybrid 1000 spectra is 

about six times better than is the case for the CRI sample set or the 
set of 1000 non-hybrid spectra selected directly from the large 
Leeds database.  (The correlation R2 value was only 0.94 for both 
the CRI sample set and the Non-hybrid Leeds 1000 set, and was 
0.99 for the HL17 set. This shows that we have very significantly 
reduced the size of sample-induced error. 

    

 
Figure 9.  Two plots, at different scales, of normalized CRI values calculated 
using the new calculation engine with the different spectral sets.  The 
horizontal axis represents the value obtained using the Hybrid Leeds 1000 
set.  The vertical axis depicts the result for the CRI samples, the Non-hybrid 
1000 set, and the proposed HL17 set, which shows a very good correlation 
with the Hybrid Leeds 1000 set. 
 

 
We also examined the spectra of specific light sources that 

score higher using the CRI sample set than using the 1000 Hybrid 
Leeds set or HL17 set.  We found that some narrow band phosphor 
fluorescent lamps, with a major narrow spectral peak near 550 nm, 
score up to 5 CRI points higher with the historic CRI sample set.  
This is a wavelength region for which the CRI samples have an 
anomalously low spectral sensitivity, so the observed difference is 
not surprising.  In all probability, had the CRI been updated 
sooner, such spectra would have been designed differently.  More 
generally, we believe that a significant advantage of the HL17 data 
set is that it is impervious to such “spectral gaming”. 

Conclusions 
We propose the HL17 set as an improved sample set for more 

accurate evaluations of the average color rendering difference 
between two spectral irradiance distributions.  

However, even with this improved accuracy, we are not 
suggesting that the CRI should be used alone for evaluation of the 
general level of human preference of a given light source.  In 
particular, this new work does not imply that Planckian and/or 
daylight spectra are necessarily optimal for human vision. 

Nevertheless, the CRI has been an important tool for many 
years, and we feel that with a new sample set as described here, it 
can remain a useful metric in the future, as energy efficiency 
concerns grow and narrow band light emitters become common. 
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