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Abstract
An accurate image-difference measure would greatly simplify the

optimization of imaging systems and image processing algorithms.

The prediction performance of existing methods is limited because

the visual mechanisms responsible for assessing image differences

are not well understood. This applies especially to the cortical pro-

cessing of complex visual stimuli.

We propose a flexible image-difference framework that models

these mechanisms using an empirical data-mining strategy. A pair of

input images is first normalized to specific viewing conditions by an

image appearance model. Various image-difference features (IDFs)

are then extracted from the images. These features represent as-

sumptions about visual mechanisms that are responsible for judging

image differences. Several IDFs are combined in a blending step to

optimize the correlation between image-difference predictions and

corresponding human assessments.

We tested our method on the Tampere Image Database 2008,

where it showed good correlation with subjective judgments. Com-

parisons with other image-difference measures were also performed.

Introduction
An image difference-measure (IDM) that accurately predicts human

judgments is the Holy Grail of perception-based image processing.

An IDM takes two images and parameters that specify the viewing

conditions (e.g., viewing distance, illuminant, and luminance level).

It returns a prediction of the perceived difference between the im-

ages under the specified viewing conditions. An accurate IDM could

supersede tedious psychophysical experiments that are required to

optimize imaging systems and image processing algorithms.

In the past decades many attempts were made to create increas-

ingly sophisticated IDMs. Unfortunately, evaluations show that they

cannot replace human judgments for a wide range of distortions and

arbitrary images so far [1, 2]. How an observer perceives a distortion

depends on his interpretation of the image content — for example,

changing a person’s skin color is likely to cause a larger perceived

difference than changing the color of a wall by the same amount.

It is therefore improbable that IDMs will perfectly predict human

perception before the cortical visual processing is comprehensively

understood. However, IDMs could provide a reasonable median pre-

diction of human judgments for only a few selected distortions, e.g.,

lossy compression or gamut mapping.

The Role of Image Appearance Models
Many IDMs use image appearance models such as S-CIELAB [3],

Pattanaik’s multiscale model [4], or iCAM [5, 6] to transform the in-

put images into an opponent color space defined for specific viewing

conditions (e.g., 10◦ observer, illuminant D65, and average viewing

distance). This can be seen as a normalization of the images to the

given viewing conditions. Advanced models also consider various

appearance phenomena to adjust pixel values to human perception.

Typically, they account for spatial properties of the visual system by

convolving the images with the chromatic and achromatic contrast

sensitivity functions. This allows a meaningful pixelwise compar-

ison of, e.g., halftone and continuous-tone images. For instance,

S-CIELAB has been used as an IDM [7] in combination with the

CIEDE2000 [8] color-difference formula.

Note that image appearance models are still an active research

area and have room for improvement. Ideally, they normalize an in-

put image to specific viewing conditions and remove imperceptible

content. The result is an image in an opponent color space from

which color attributes (lightness, chroma, and hue) can be obtained

for each pixel. This space is referred to as the working color space

in the following.

The Role of the Color Space
It is advantageous for image-difference analysis if the working color

space is highly perceptually uniform, meaning that Euclidean dis-

tances correlate well with perceived color differences. Note that a

color space cannot be perfectly perceptually uniform because of ge-

ometrical issues and the effect of diminishing returns in color-dif-

ference perception [9]. In addition, color-difference data is obtained

using color patches instead of complex visual stimuli. Nevertheless,

image gradients and edges require perceptually meaningful normal-

ization, i.e., their perceptual magnitudes should be reflected by the

corresponding values as closely as possible. Analyzing such image

features in a highly non-uniform color space may cause an over- or

underestimation of their perceptual significance.

Image-Difference Features
Many IDMs create image-difference maps showing perceived pixel

deviations between two input images. For image-difference evalu-

ation, these maps are transformed into a single characteristic value,

such as the mean or the 95th percentile. However, psychophysical

experiments show that the degree of difference visibility is not well

correlated with perceived overall image difference [10]. For exam-

ple, global intensity changes are generally less objectionable than

compression artifacts [10]. It is therefore likely that the prediction

performance of IDMs that only operate on image-difference maps

can be improved.

Our approach uses hypotheses of perceptually significant im-

age differences. We call these hypotheses image-difference features

(IDFs). Various examples can be found in the literature [10, 11, 12].

Fig. 1 outlines the normalization and feature-extraction steps of our

proposed image-difference framework.

We assess the relevance of our IDFs using data that relate im-

age distortions (e.g., noise, lossy compression) to perceived image

differences. A vector of IDFs is computed for each image pair (ref-

erence image and distorted image). This allows us to determine the
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correlations of individual IDFs with the perceived differences of the

image pairs, which are expressed by mean opinion scores (MOS).
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Figure 1. Normalization and feature-extraction steps of the proposed image-

difference framework. The example image is part of Mark Fairchild’s HDR Pho-

tographic Survey [13].

Extracting Image-Difference Features
Even though the human visual system is not comprehensively under-

stood, we assume that several superposed mechanisms contribute to

the assessment of image differences. Our method reflects this as-

sumption: it considers not just one but multiple hypotheses of per-

ceptually important image differences. These hypotheses are math-

ematically described as image-difference features (IDFs). Although

the features have low complexity, the combination of several IDFs

allows us to model complex mechanisms of the visual system with

a structurally simple algorithm. The IDFs are combined into an

image-difference measure in a blending step, which is described in

the next section.

Image-difference features are computed for image pairs, which

in most cases consist of a reference image and a distorted image. As

already mentioned, all images are processed by an image appearance

model and transformed into a working color space before the IDF

computation. In this paper, we use S-CIELAB in combination with

the LAB2000 [14] color space. This space is approximately percep-

tually uniform with respect to the CIEDE2000 color-difference for-

mula. Note that LAB2000 is optimized for the D65/10◦ white point,

which causes some error when transforming sRGB images (D65/2◦)

into the space. MATLAB implementations of S-CIELAB [15] and

LAB2000 [16] are available online.

The IDF computation consists of three steps (see Fig. 2 for de-

tails):

1. Per-pixel feature computation

(e.g., low-pass filtering, image-gradient computation)

2. Image-difference merging

(e.g., Euclidean/chroma/hue differences)

3. Characteristic-value computation

(e.g., mean, median, 95th percentile)

An example of an IDF computation is shown in Fig. 3. Our approach

is strictly modular — the operations at each processing step can be

changed without difficulty. In addition, operations can be added to

incorporate new hypotheses into the framework.

Note that the low-pass filters at the first processing step repre-

sent suprathreshold filtering operations, whereas threshold filtering

is performed at the initial normalization step (using S-CIELAB).

Combining Image-Difference Features
Each image-difference feature (IDF) represents a simple hypothesis

of perceptually significant image differences. To model the complex

mechanisms of the visual system without increasing the complexity

of our IDFs, we can combine several IDFs into an image-difference

measure (IDM) in a blending step. Blending was the key to winning

the Netflix Grand Prize [17, 18], a competition based on data from a

recommender system.

The blending model should be simple and only depend on a few

parameters to avoid overfitting the data. Thus, the number p of IDFs

in a blending model should be small. In this paper, we consider three

models:

1. Linear model:

IDMLin(I,J) =
p

∑
i=1

λi · IDFi(I,J), (1)

where I, J denote the input images and λi are the model parameters.

These parameters can be determined by linear regression on a set

of training image pairs Ik,Jl with experimentally determined mean

opinion scores MOS(Ik,Jl), k = 1, . . . ,m and l = 1, . . . ,n.

2. Polynomial model:

IDMPoly(I,J)=
p

∑
i=1

λi ·IDFi(I,J)+∑
i< j

λi j ·IDFi(I,J) ·IDF j(I,J). (2)

Equation (2) shows a second-order polynomial without the quadratic

terms. The polynomial order should be small (≤ 3) to avoid oscilla-

tion and overfitting. The model parameters λi can be determined by

linear regression on a training image database.

3. Factorial model:

IDMFac(I,J) =
p

∏
i=1

IDFi(I,J)
λi
. (3)

The parameters λi of the factorial model can be optimized on a train-

ing image database using linear regression of log-transformed data.
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Figure 2. Processing steps of the image-difference feature (IDF) computation. Each path from left to right represents a different IDF. The dimensions of the input

and output data at each step are indicated at the connecting lines. The upper three operations of the “image-difference merging” step represent image comparison

functions proposed by Wang et al. [10]. For reasons of simplicity we only used the mean in the characteristic-value-computation step of our implementation.

The performance of the resulting image-difference measure strongly

depends on the choice of combined IDFs. Combining two IDFs that

reflect the same hypothesis does not improve the prediction accu-

racy, even if they both correlate well with the subjective assessments

expressed by the mean opinion scores (MOS). It is therefore advis-

able to sort the IDFs according to their impact on the prediction per-

formance. This sorting is performed using a set of training images

with corresponding MOS. To avoid overfitting the training data, only

the few most important IDFs should be considered.

A sorting algorithm based on the Spearman rank-order correla-

tion is outlined below. Note that the result depends on the selected

blending model.

Algorithm 1 IDF SORTING

INPUT: MOS for M image pairs, N IDFs

IDF1 = IDF with highest Spearman correlation to MOS

FOR i = 2 : N ITERATIONS

FOR EACH IDF /∈ {IDF1, . . . , IDFi−1}

Optimize blending model parameters based

on {IDF1, . . . , IDFi−1, IDF} with respect to MOS

Compute Spearman correlation between

blending model predictions and MOS

END FOR

IDFi = IDF resulting in highest Spearman

correlation between predictions and MOS

END FOR

OUTPUT: Sorted IDFs {IDF1, . . . , IDFN}

In summary, we obtain image-difference measures by:

1. Feature extraction: Computing a large number of IDFs for a

set of training images.

2. Sorting: Selecting the most important IDFs considering re-

dundancies and prediction performance of individual IDFs.

3. Blending: Optimizing the parameters of the selected blending

model on the training images.

Steps 2 and 3 are performed simultaneously (see Algorithm 1).

Image Database
We trained and tested our method on the Tampere Image Database

2008 [1, 19]. It contains 1700 distorted images derived from 25 ref-

erence images and more than 256 000 quality judgments from more

than 800 observers.

Seventeen image distortions in four intensities were applied to

each reference image. Some examples are shown in Fig. 4. The

distortions can be divided into the following categories: noise; lossy

compression; miscellaneous (e.g., blur, denoising, intensity shifts).

Subjective scores were obtained through pair comparisons of

two distorted images with the corresponding reference image. Ap-

plying the “Swiss competition principle” [1], a mean opinion score

(MOS) between 0 (worst) and 9 (best) was determined for each dis-

torted image. Since we designed our IDFs to return values within

[0,1], we scaled the MOS to the same range to fit the parameters of

our blending models.

As our method uses S-CIELAB to normalize the input images,

we had to specify the image resolution in samples per degree (spd) of
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Figure 3. Example of an image-difference feature (IDF) computation. The two input images are first normalized using an image appearance model and transformed

into an opponent color space. In this example of an IDF, the following processing steps are then performed: 1. Low-pass filtering of the lightness component (the

chromatic components are discarded); 2. Computation of a difference image using local mean comparison (as proposed by Wang et al. [10]); 3. Computation of the

element-wise mean of the resulting difference image. The example image is part of Mark Fairchild’s HDR Photographic Survey [13].

the visual field. Assuming a viewing distance of two screen heights

at a resolution of 1152× 864 pixels and a 19′′ display [1] yields an

image resolution of approximately 30 spd; this was our S-CIELAB

parameter.

Results and Discussion
To evaluate our image-difference framework, we first compiled a set

of image-difference features (IDFs) as shown in Fig. 2. Following

the principle of cross-validation, we divided the image database into

two disjoint sets — a training set and a test set — and computed the

IDFs for all training image pairs.

Using the IDF sorting algorithm (Algorithm 1) we determined

the five most significant IDFs for each of the three blending models

[Eqs. (1)–(3)]. The model parameters were optimized on the train-

ing set. We then computed the predictions of the resulting image-

difference measures (IDMs) for the test set images and compared

them with those of various quality assessment methods: MSE, SNR,

PSNR, SSIM [10], MSSIM [21], VSNR [22], VIF [23], VIFP [23],

UQI [24], IFC [25], NQM [26], and WSNR [26]. The predictions of

these methods were obtained using the MeTriX MuX Visual Quality

Assessment Package [27].

We used the Spearman and the Kendall rank-order correlations

to compare the image-difference predictions with the correspond-

ing mean opinion scores (MOS). The results are shown in Table 1.

Higher Spearman and Kendall correlations indicate better prediction

accuracy. We used these common rank correlations instead of, e.g.,

the linear Pearson correlation, because rank correlations are not af-

fected by nonlinear relations between the input variables. However,

rank correlations do not show the absolute deviations between per-

ceived and predicted image differences.

Following common practice, we computed overall correlations

between all predictions and MOS. This does not properly reflect the

psychophysical data. The subjective scores of our test database are

based on comparisons between images derived from the same orig-

inal (all compared images show the same scene). This yields local

instead of global scores, i.e., MOS of images derived from different

originals are not comparable. For a meaningful overall correlation,

individual correlations between MOS and predictions for each scene

Correlation

Method Spearman Kendall

WSNR 0.490 0.395

SNR 0.534 0.382

MSE 0.554 0.401

PSNR 0.554 0.401

IFC 0.571 0.430

UQI 0.609 0.450

NQM 0.620 0.460

SSIM 0.624 0.454

VIFP 0.635 0.476

VSNR 0.704 0.530

VIF 0.735 0.570

MSSIM 0.862 0.665

IDF-based (linear) 0.877 0.687

IDF-based (factorial) 0.880 0.698

IDF-based (polynomial) 0.890 0.714

Table 1. Correlations between perceived images differences and

corresponding predictions for a set of test image pairs. Different

blending models were used to create the three IDF-based IDMs

that consist of five IDFs each. The results are sorted by increas-

ing Spearman correlation.

should be averaged.

It is evident from Table 1 that the IDF-based image-difference

predictions correlate well with perceived image differences based on

the Spearman and Kendall correlations. The polynomial blending

method leads to slightly better predictions than the linear and facto-

rial methods. Note that some of our IDFs include parts of the SSIM

quality measure (see Fig. 2), which is also included in our compari-

son. Since training and test images are part of the same database, the

corresponding subjective assessments were collected under similar

viewing conditions. Consequently, the correlation may decrease for

judgments obtained under different viewing conditions.

A comparison of IDF-based image-difference predictions with

corresponding MOS is shown in Fig. 5. The predictions seem to be

linearly related to the perceived differences up to a MOS of approx-

imately 0.6, but not for higher MOS. It is generally preferable if the
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a) Reference image b) High frequency noise c) JPEG 2000 transmission errors d) Intensity shift

Figure 4. Example images from the Tampere Image Database 2008 [1, 19]. The original image is available online [20].
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Figure 5. Comparison of mean opinion scores with the predictions of an IDF-

based IDM, which was created from five IDFs and a polynomial blending model.

The computations are based on test images that were not used to train the IDM.

predictions of the IDM are proportional to the perceived image dif-

ferences. For example, if the perceived difference of an image pair is

twice as large as that of another pair, this should be reflected by the

corresponding predictions. In addition, a linear relationship enables

the use of linear correlation measures to calculate and optimize the

correlation between MOS and predictions.

Fig. 6 illustrates how the prediction performance of our IDMs

depends on the number of combined IDFs considering different

blending methods. Note that the number of parameters for the linear

and factorial blending models increases linearly with the number of

IDFs, whereas it grows rapidly for the polynomial model. With the

linear and factorial models, the prediction performance decreases if

more than four IDFs are combined. With the polynomial model, the

performance drops considerably if more than eight IDFs are used. In

all three cases the decreasing prediction performance indicates that

the training data are overfitted.

Conclusions
We proposed a method to create image-difference measures (IDMs)

based on image-difference features (IDFs), which represent simple

hypotheses of how the visual system assesses image differences.

Several IDFs are combined in a blending step. Their weights are

optimized using training images. The resulting set of weighted IDFs
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Figure 6. Spearman rank-order correlations between perceived and predicted

image differences depending on the number of combined IDFs. The correlations

are based on test images that were not used to train the IDMs.

is an image-difference measure.

We created three IDMs using linear, polynomial, and factorial

blending. Their predictions showed good correlation with human

judgments for a set of test images. To avoid overfitting, only the few

most important IDFs should be combined.

The prediction performance could be improved by adding non-

redundant IDFs (reflecting new hypotheses) to the pool of IDFs. In-

cluding so-called saliency maps [28, 29] in the feature computation

may also increase the prediction accuracy.

Some common image distortions were not part of our test im-

age database, e.g., gamut mapping and HDR tone mapping. If we

trained our IDMs on such distortions, entirely different IDFs would

be selected for an optimal prediction performance.
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