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Abstract
Professional photographers compose and process an image

to emphasise the image’s subject. Images with high salience,

where a region is highly distinct from its background, are per-

ceived to be of much greater quality in panel tests. Because of

technical and expertise considerations, “average” camera users

often capture images that have a lesser salience, thereby decreas-

ing the image’s appeal.

The standard workflow to increase the perceived salience of

an image’s main subject consists in identifying the region of in-

terest, and processing that region according to a set of rules. The

level of analysis and processing can greatly vary, from increas-

ing saturation or sharpness to identifying semantic concepts, e.g.,

faces, and employ a complex, tailored, modification.

This is a delicate problem to approach: saliency prediction

algorithms are currently not precise enough, and region classi-

fication is necessarily limited to a few specific classes. Further-

more, the variety of content often precludes the usage of a fixed

set of rules in the enhancement step.

Rather than attempting to predict saliency in images, we pro-

pose that important regions are somewhat distinct from their sur-

roundings and can be identified by features that are spatially com-

pact, in addition to standard compositional cues. Having identi-

fied the region of interest, we provide an enhanced image by in-

creasing the values of its compact feature(s), i.e., increasing the

perceived saliency of the region of interest. Preference studies in-

dicate our modified images are significantly preferred to the orig-

inal ones.

Introduction
An image, digital or hardcopy, is only an imperfect represen-

tation of a scene, produced by a device whose accuracy is limited

by its technical (e.g., optical, mechanical or electronic) capabil-

ities. Should one be able to create an ideal, perfect imaging de-

vice, the images it would produce would still not be optimal in a

preferred, subjective sense. A device able to reproduce physical

reality perfectly does not take into account the major processing

centre that is the human brain, in particular the visual cortex. In

addition, humans compare images to their perception or memory

of an original scene. Memory is imperfect and affected by prefer-

ence [13]. As a result, it is rare that users require or even desire

that an image be a perfect replica of reality. Instead, a preferred

reproduction is being sought; every image can be improved, in a

preferred sense at least.

Improving the perceived or subjective quality of an image

is as old as pictorial art itself, and photography in particular.

There are indeed few images that cannot be improved by altering

their contrast, saturation or colour balance. Improvements, en-

hancements, or image modifications with the intent of providing

a (more) preferred representation of the scene have traditionally

followed two distinct paths: global and local image modification.

Global methods affect all parts of an image equally and have

been employed for a long time as a means to alter the reality of a

scene, usually related to the nature of the light impinging on the

scene or light-sensitive imaging elements. Examples of global

methods include the use of yellow or red filters to modify im-

age contrast in black and white photography, unsharp masking

for sharpness, or white balancing. While capable of significant

image improvement, the usefulness of global methods is gener-

ally limited either by the need for manual intervention, or the

range of scenes to which they can be applied. Indeed, when a

scene’s statistics do not comply with the method’s underlying as-

sumptions, a frequent occurrence, global modifications can sig-

nificantly decrease the perceived image quality [9].

Local modification methods affect regions differently, de-

pending on the regions’ characteristics. In particular, local meth-

ods can be better tailored to a specific image or region, thereby

avoiding many of the pitfalls of global enhancement techniques.

This increased precision allows small numerical modifications to

result in significant perceptual changes. Because the image is sub-

ject to less changes, local enhancement methods are potentially

more robust than global ones. However, increased precision is

generally gained at the expense of versatility: local methods are

highly specific and apply a single correction, or are targeted to-

wards a particular use-case.

This paper proposes a method to improved subjective im-

age quality by increasing the perceived salience of selected im-

age regions. The difficulty in doing so traditionally stems from

the lack of prior knowledge one has about what is important in a

given image, see Section 2. Rather than building a saliency model

or attempting to classify image regions into perceptually relevant

classes, we hypothesise that an input image already exhibit some

degree of contrast in its salient region. Specifically, we decom-

pose the image into a series of simple Key Attributes (KA) such as

opponent hues, luminance, sharpness, contrast and calculate their

spatial compactness. The underlying idea is that KA that have a

compact distribution are better indicators of content contrast and

saliency than widely spread ones. We subsequently weigh the

most compact attributes with information related to compositional

rules, e.g., important salient regions are more likely to be located

close to the centre of the image [7, 10] and region size, which re-

duces the chances of enhancing a distractor such as noise. Finally,

we modify the values of the relevant KA to emphasise the region

of interest. An illustration of our method is shown in Fig. 1. We

validate our approach by performing a forced choice preference

experiment that show our enhanced images are preferred over the

original ones by a 9:1 ratio.
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Figure 1. The different steps of our proposed image enhancement method.

The input image is decomposed in a series of simple Key Attributes: here

the L∗, a∗, and b∗ channels of the CIELab colourspace; the channels are

filtered using a centre bias filter and a size filter; the compactness of the KA

is calculated and the attribute whose compactness is the highest (here: b∗).

is selected for modification, resulting in the output, enhanced, image.

Salient regions as compact regions
Putting a strong emphasis on the main subject of an image,

i.e., making it highly salient, can be done with compositional

(e.g., selecting a background that contrasts with the foreground

object) or physical (e.g., bokeh obtained by shooting with a large

aperture) techniques. For general images, however, inferring what

part of the image is important to the photographer or viewer from

the pixel values is a very arduous task. Eye tracking is a reliable

way to acquire that information [12], but it is highly unpractical

in a general context.

Predicting regions of interest in images is generally per-

formed by region classification over pre-determined classes, e.g.,

memory colours [4, 11, 13] or faces [3], or by determining salient

regions in images from a viewer’s perspective [1, 6]. The variety

of natural images, however, diminishes the relevance of region

classification, while salient region prediction methods do not cur-

rently correlate well enough with actual salience [5].

To avoid the difficulties associated with saliency prediction

and image classification, we assume that regions of interest are

(somewhat) distinct from the rest of the image in terms of simple

low-level features. Instead of considering the magnitude of that

distinction directly in terms of feature values, we calculate the

spatial compactness of the distribution of these features across

the entire image. The compactness is calculated as the kurtosis

of the feature distribution, i.e., the “peakier” the distribution, the

higher the kurtosis. In this work, we will use seven Key Attributes

as features: Luminance; 0◦, 45◦, 90◦, and 135◦ hue lines in the

a∗b∗ plane; contrast; sharpness. Contrast at a pixel is measured as

the Michelson contrast of a 15×15 pixel window centred at that

pixel. Sharpness at a pixel is taken to be the spectrally weighted

magnitude of the Fourier transform taken over a 21× 21 pixel

window centred at that pixel. Luminance is the L∗ channel of

CIELab, while the hue features are defined, from a∗ and b∗ to be:

H0 = a∗

H45 = sign(a∗+b∗)|
√

a∗ 2 +b∗ 2 cos(
π

4
− atan(

b∗

a∗
))|

H90 = b∗

H135 = sign(b∗−a∗)|
√

a∗ 2 +b∗ 2 cos(
3π

4
− atan(

b∗

a∗
))|

Of course, determining saliency in such a fashion potentially

introduces errors when distractors (small, highly distinct objects

drawing attention away from the image’s main subject) or noise

are present. To maximise the chances of detecting actual regions

of interest, we filter the feature distributions with a compositional

filter and a size filter. The compositional filter is based on ob-

servations by several saliency prediction experiments which con-

cluded that salient regions were, in everyday photographs, over-

whelmingly located near the centre due to average photographer’s

compositional bias [7, 8]. Our compositional filter is a 2D gaus-

sian centred in the middle of the image, with a standard deviation

of a quarter of the image width. Recent work [2] has shown that

large online photo-collections increasingly followed the composi-

tional “rule of thirds”. The primary use of the compositional filter

is to prevent otherwise salient distractors or artefacts to be de-

tected. The simple central gaussian filter we employed performed

satisfactorily, but one should keep in mind that for different im-

ages/databases, the compositional filter can be modified to better

reflect the photographers’ skill or bias, e.g., the rules of thirds is

likely to be more prevalent in a semi-professional image reposi-

tory, while centre bias occurs with a greater frequency in casual

snapshots.

The size filter gives more weight to regions of a given size.

To be adequate, it has to decrease the perceived importance of

small potential salient elements such as noise and image artefacts

that generally subtend less than one degree of visual angle, while

emphasising perceptually relevant regions. Several studies have

suggested that human eye fixations may be correlated with the

size of the underlying region [7, 10] . Our own experiments in-

dicate that most salient objects are comprised between 3 and 5

degrees of subtended visual angle. The results presented in this

paper were obtained using a 4◦ box filter as our size filter.

Let I be the input image to the process and fi, i = 1, . . . ,7 be

the seven Key Attributes used to analyse the image. We write the

decomposition of I in key attributes as:

Fi = fi(I) (1)

the “equivalent probability distribution” of the decomposed image

is:

Pi =
Fi

∑x ∑y Fi
(2)

where x and y are the row and column indexes of the image, i.e.,

the operation is done on a per-pixel basis.

Prior to calculating the compactness, we filter the image with

the compositional filter C and the size filter S, as defined above.

Pci = Pi ∗C (3)

Pcsi = Pci ∗S (4)

where ∗ is the convolution operator.

The relevant KA for defining saliency and enhancing the im-

age is kopt :

kopt = max
i

(ki) (5)

Where ki is the kurtosis of Pcsi, a measure of the concentration

(or “peakedness”) of the two dimensional distribution associated

with every key attribute.
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Figure 2. Original image and its decomposition into the seven proposed KAs: Luminance, 0◦, 45◦, 90◦, and 135◦ hue lines, contrast, and sharpness. The

calculated compactness value is shown underneath each image. For space reasons, only Pcsi is shown.

Figure 2 shows an image decomposed by the seven KA and

their measured compactness.

Image Enhancement
Because a strong salient region of interest is preponderant

for perceptual image quality, most images can be enhanced by in-

creasing the saliency of the region of interest. One however has

to exercise caution when increasing salience, because introducing

defects or artefacts in a highly visible region is especially detri-

mental to image quality [5].

We propose to noticeably but conservatively enhance the im-

age by modifying what is already there. The “optimal” key at-

tribute is the one whose distribution over the image is the most

compact, i.e., it is the most discriminative KA between the re-

gion of interest and its background. Because this “optimal” KA

already crystallises the saliency of the region of interest, a small

modification of its value will have a visible effect. Because the

modification is small, no artefacts are expected to be introduced,

hence the robustness of the method.

In practice, we employ an s-shaped curve that will increase

the high values of Fopt and decrease its low values. An s-shaped

curve is ideal to prevent clipping of the KA values. We calculate

Fout , the modified value of Fopt as:

Fout = h(Fopt) (6)

where

h(x) =
1

1+ en((x∗α)−β )
(7)

and n, α , and β are chosen to be 0.55, 20, and 10, respectively. An

illustration of the type of tonal curves induced by h(x) is shown

in Fig.3.

While working on Fopt may modify image values outside of

the actual region of interest, it is preferable than employing Pcsopt

for the modification step because the modified edges introduced

by the successive filtering operations can produce halo-type arte-

facts.

Figure 3. The tone curve h(X) used to modify the values of the selected

KA.

Results
Figure 4 displays the results obtained with the algorithm de-

scribed in this paper. We show the input image, output image and

indicate which one of the seven key attributes was selected for

modification. All the input images are JPGs captured by a point

and shoot camera with no additional processing.

The results show that our enhancement parameters, while

conservative, are noticeable1 and do not generate unwanted arte-

facts. This qualitative assessment is corroborated by the results

of a panel test comprising 14 observers and 12 images. Both

the original and enhanced image, printed on high quality glossy

photo paper, were presented together and the observers were

asked to indicate which one they preferred. In 91% of the cases,

the enhanced image was preferred. The preference is significant

(p < 0.01) with respect to both observers and images.

Colour features were responsible for most of the compact

KA in the images shown in Fig. 4, as well as the other images of

our tests. This appears to be in contradiction with most existing

1The results are better appreciated when viewed on screen.
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Figure 4. Original (left) and enhanced images with our method (right). For

each image, the modified channel is also displayed.

saliency prediction algorithms, which weight colour very slightly.

This phenomenon could be the result of our dataset (most com-

pact camera have an almost infinite depth of field and contrast is

sometimes equalised during the in-camera processing), coupled

with the fact that people generally prefer more colourful images.

Applicability
An implicit assumption of our method is that the selected

key attributes are sufficient to discriminate regions of interest

from their background. While this assumption holds true for

regions whose saliency is induced by low-level features, it is

well known that a number of highly salient regions are identi-

fied through higher order cognitive processes, for example: faces

and text. Some of these semantic regions can be detected with

our method (e.g., text if sufficiently distinct from its background

will be highly compact), but others normally require more sophis-

ticated features for accurate detection. Similarly, if depth of field

differences are not significant, one cannot increase the saliency of

a face by enhancing its “faceness”.

The problem of semantic classes is thus twofold: detecting

these regions require complex features, which in turn cannot be

readily used for enhancement. Addressing these issues is, how-

ever, not as hard as it appears, because the compactness hypothe-

sis still holds. Indeed, if we include a face detector in our set of

key attributes and look at its output pixel-wise to form equation

(1), we can readily follow the rest of our method to determine

whether faces are salient. If a single face is present in the image,

the output of the detector will be highly compact and the face

will be deemed salient. When many faces are present, the output

of the detector will have a low compactness and other elements

of the image will be regarded as more important from a saliency

point of view.

The enhancement step for semantic classes would likely have

to be modified, however, preferred rendering of high-level classes

has been much studied and automatic steps exist, e.g., people pre-

fer warmer tones in faces. Including such classes would neces-

sitate an optimisation of the enhancement parameters based on

observers’ responses in a larger psychophysical experiment, de-

parting from the generic character of the method presented here.

Conclusion
Local image enhancement and region of interest prediction

are both hard problems. In this paper, we have proposed a simple,

yet effective method to enhance an image by considering com-

pact regions as salient, and increasing the features that induce

this saliency, effectively bypassing the prediction task. Because

the image is modified only with respect to attributes that already

exhibit a difference between the detected region of interest and

the rest of the image, small modifications produce visible effects

without risking to introduce visible artefacts. Psychophysical ex-

periments demonstrate that images processed with our method are

significantly preferred over original one, by a 9:1 ratio.
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