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Abstract 
Image compositing is a standard computer graphics 

technique used to merge independently created visual elements 
into a single image. However, errors in the source material or the 
compositing process can destroy the realism of the result. In this 
paper we describe a series of experiments that investigate the role 
that lighting errors in the source material have on the realism of 
composite images. We study two classes of errors: pixel errors - 
differences in illumination intensity or color temperature; and cue 
errors – differences in illumination or shadow direction. The 
results show that the sensitivity to errors varies with the type of 
error. While observers are reasonably sensitive to pixel errors that 
change the statistics of the foreground and background image 
regions, they are less sensitive to cue errors that leave the image 
statistics unchanged but introduce conflicting information about 
scene lighting conditions. These trends are modulated by the scene 
content. These studies represent some first steps towards 
developing perceptual metrics for error tolerance in image 
compositing that can be used to improve the fidelity and efficiency 
of compositing process. 

Introduction  
Image compositing is a technique in computer graphics that is 

used to merge independently created visual elements into a single 
image. The origins of compositing date back to 1857, when Oscar 
G. Rejlander created a single image by combining different regions 
of 32 photographs [5]. Digital image compositing has become 
ubiquitous in filmmaking [1,8], television [22], virtual sets [11], 
and augmented reality [7]. 

When used successfully, compositing creates the illusion that 
the composited elements are part of a single, cohesive scene. 
However, errors in either the compositing process or the source 
material can destroy the illusion. For example, a standard 
compositing technique is to photograph an object against a 
uniformly colored screen, and then to superimpose this object on a 
new background. Figure 1 (left) shows that errors in the 
compositing process, such a colored silhouette around the object 
caused by poor segmentation, clearly indicate that the image is not 
real. Recent advances in compositing technology [22,16] have 
eliminated the majority of these process errors. Unfortunately, 
even scenes that are “process perfect” may not appear realistic 
because of lighting errors in the source material. An example of a 
common source error is shown in Figure 1 (right), where the 
composited object’s lighting properties do not match the target 
environment’s lighting. Although in the compositing industry there 
are rules of thumb for creating realistic results, there have been no 
systematic studies of the tolerance for such errors. An 
understanding of how these source errors affect the realism of 
composite images would greatly facilitate the compositing process. 

In this paper, we study the visual effects of source errors in 

image compositing. In a series of psychophysical experiments we 
measure visual sensitivity to four common source lighting errors: 
brightness errors, color errors, illumination direction errors and 
shadow direction errors. We use two scenes that are representative 
of common compositing situations: a tabletop still life, and a 
television “talking heads” scene with two subjects sitting behind a 
desk.  Our results show that different lighting errors are not equally 
detectable, and also that the detectability of errors depends in part 
on the scene content. 

Background 
In 1984 Porter and Duff [17] introduced a digital matting 

algebra that is now widely used in compositing applications, that 
allowed two images to be merged by employing an extra image 
“alpha” channel that contains transparency information. This 
operation allowed objects photographed against a uniform “blue 
screen” to be segmented and superimposed over selected 
backgrounds. Brinkmann [5] and Rickitt [20] offer excellent 
surveys of the history and development of digital image 
compositing. 

Process errors in compositing 
Recent advances in blue screen technology [22,16] have 

solved many of the problems traditionally associated with the 
compositing process. For example, one early problem was how to 
correct for the blue (or green) light that would reflect from the 
background and would produce halos around composited objects. 
This problem is now solved automatically by most systems (known 
as spill suppression).  

Camera errors have been another source of problems in image 
compositing. In standard cameras, the finite depth of field causes 
image focus differences. Film grain or CCD noise is imparted to 
the images. Motion blur is recorded due to finite exposure times.  
Perspective distortion is added because of the nature of lenses. 
Color imbalances may be present in the media. Finally, the CCD or 
film stock will have a limited dynamic range that will impart some 
transfer function onto the recorded images. To effectively 

 
Figure 1. Errors in image compositing. Left: Composite process error 
(improper segmentation), Right: Image source error (differences in lighting 
color and direction). 
 

 

18th Color Imaging Conference Final Program and Proceedings 375



composite images created through different processes, one must 
understand the limitations inherent in each process and compensate 
for them. Fortunately, for the most part in modern compositing 
systems, these “process” problems have been solved [5]. 

Source errors in image compositing 
Unfortunately, the focus on the technical “process” of 

compositing, ignores the role that “source” factors have on the 
realism of the result. However, manufacturers of compositing 
systems are beginning to realize that creating better source material 
is a critical issue. For example, in a technical bulletin [21], 
Ultimatte makes the following plea to users: “Proper lighting is the 
key to realism in image compositing. Not only will it be difficult to 
make the Ultimatte function properly if the lighting is not right, but 
even a technically perfect composite will look phony with bad 
lighting”. Books and papers  on compositing techniques [21,5] 
have begun to note rules of thumb to guide users towards better 
results: 

 

• Composite scenes that are matching exterior shots should be 
filmed outside.  

• Discrepancies in skin tones should be avoided. 
• Matching the location of light sources is important for scenes 

with strongly cast shadows.  
• Color filters (gels) should be used to recreate the lighting 

color for scenes. 
 

While these rules of thumb are widely known, guidelines for 
applying them to achieve visually realistic results are lacking. 
Studies that link composting practice to knowledge of the 
requirements and limitations of human vision would be of great 
value.  

Source lighting errors 
Lighting errors in image compositing can be placed into two 

categories: pixel errors and cue errors. Pixel errors include 
brightness and/or color differences between the composite layers. 
These are typically produced by differences in the intensity or 
color temperature of the illumination in the scenes that are being 
composited. Cue errors on the other hand, are inconsistencies in 
the spatial properties of illumination in the composited scenes. 
Sources of cue errors include discrepancies in the direction of 
illumination (surface shading) and differences in the directions of 
cast shadows. 

With pixel errors, the image statistics of the composited 
element and the scene context are different, according to a 
uniform, histogram-modifying rule. In contrast, cue errors preserve 
the image statistics of the composited region and the scene context, 
but the visual information about direction and qualities of 
illumination are contradictory. 

In the experiments that follow we study four lighting errors 
that are considered most likely to affect the realism of image 
composites. With respect to pixel errors we study the effects of 
source brightness and color temperature differences. With respect 
to cue errors we study the effects of differences in shading and 
shadows caused variation in the spatial properties of lighting. The 
errors introduced by these manipulations are representative of 
many real-world compositing situations and therefore the results of 

the studies should be directly applicable to practice.  

Contributions from vision and graphics 
In the vision literature, there are many studies on the 

perception of objects and scene illumination [3,2,10,12,15], but 
little of this work is directly applicable to the analysis of lighting 
errors in compositing. One exception is the work of Ostrovsky et 
al. [14], which directly addresses the issue of lighting direction 
inconsistencies in images. They found that observers were 
relatively insensitive to even large lighting inconsistencies, 
however, they did not study the errors parametrically, which limits 
the applicability of the results. 

In the computer vision literature there have recently been 
efforts [26,27,28] to develop algorithms for automatically 
detecting image forgeries and composites on the basis of errors in 
shading, shadows, and perspective. These algorithms have focused 
on taking advantage of photometric and projective inconsistencies 
and have not focused on human abilities for detecting errors. One 
exception is the work of Farid and Bravo [29] who have recently 
started to investigate the perception of shading, shadow, and 
perspective errors. 

In the computer graphics literature, studies by a number of 
researchers [4,13,19,18,23] have focused on the promise of 
perceptually-based rendering, in which models of human vision are 
used to improve the efficiency and fidelity of the image synthesis 
process. One recent project that is particularly relevant is 
Ramanarayan et al.’s [25] work on the concept of “visual 
equivalence” that quantifies how changes in the light field in a 
scene affects the appearance of objects, and develops a metric that 
can predict when two different images are equally realistic as 
representations of a scene.  

 

 
Figure 2. Test scenes and lighting errors. Rows show the library (top) 

and kitchen (bottom) scenes. Left column shows the reference (control) 
images. Middle and right columns show representative brightness, color, 
shading, and shadow errors (reading order) 

Experiments 
We have conducted a series of psychophysical studies to 

measure visual sensitivity to lighting errors in image compositing. 
In each study we ask subjects to judge which of two objects has 
been composited into an image. Two scenes are tested and the 
types and magnitudes of lighting errors are varied. The studies 
yield a set of psychometric curves that describe an average 
observer’s ability to detect each type of compositing error. 
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Test scenes 
 We studied the detectability of lighting errors in two scenes. 

Representative images of these two scenes are shown in Figure 2. 
The first scene (kitchen) was a simple tabletop still life consisting 
of two bowls of fruit against a kitchen backdrop. The second scene 
(library) approximated a standard television “talking heads” 
context with two people seated behind a desk.  

Each scene consisted of two objects (bowls and people 
respectively) side by side within the background context. We 
created these arrangements for three reasons. First we wanted to be 
able to use a standard two-alternative forced choice (2AFC) 
procedure to avoid bias and facilitate data analysis. Second we 
wanted observers to make their judgments on the basis of how well 
the objects “fit” into the scenes rather than on simple pixel-to-pixel 
comparisons. Note that the two test objects are completely 
different pixel-for-pixel though they are similar as objects and 
therefore have many of the same visual features and fit equally 
well within the background contexts. Finally, to maximize the 
detectability of errors, we wanted scenes where the errors were 
centrally located in the images and were associated with the 
“subjects” of the scenes. 

Stimulus images 
In producing the image sets used in the experiments, our goal 

was to vary each of the error parameters to span its threshold of 
detectability. Appropriate ranges for each type of error were 
determined in pre-testing. Seven points along each range were 
selected for further testing. The specifics of the image sets for each 
error type are described below. 

Pixel errors: 
Brightness errors: To simulate modifying light source 

brightness, seven stimulus images were created by adding or 
subtracting offsets to the black and white points of a reference 
image. The increments were set to be -11.7%, -7.8%, -3.9%, 0 (no 
change), 3.9%, 7.8%, 11.7%. This range was chosen to span the 
expected threshold values.  

Color temperature errors: To simulate changes in light 
source color temperature, we modified a reference image by 
shifting pixel chromaticities according to changes in the image’s 
white point along the black body locus. Seven stimulus images 
were generated using the following white points: 2869K, 2972K, 
3082K, 3200K (defined as reference white), 3328K, 3466K, and 
3617K. 

Cue errors:  
Shading errors: To modify object shading we varied the 

scene illumination direction. The light source was a Lowel 
Totalight with a tungsten halogen bulb rated at 3200K and a two 
foot diameter bounce umbrella. Starting with reference lighting set 
approximately 30o to the left of the camera viewpoint, we varied 
the illumination direction in six steps between 0o and 105o relative 
to the original light axis to generate seven stimulus images (see 
Figure 3).  

Shadow errors: Stimulus images for the shadow errors set 
were created using the  images generated for the shading set. To 
create images with inconsistent shadows, shadow regions in the 
reference image were selected and altered using Adobe Photoshop. 

The seven shadow error directions created corresponded with the 
lighting directions used in the shading set.  

Images were acquired at 1344x1024 pixels using a Sony 
DSC-D770 digital camera with lens focal length set to 50mm, 
aperture 5.6 and ISO 50. All camera settings were fixed for the 
duration of the capture session. Images were transferred from the 
camera as uncompressed TIFFs. Adobe Photoshop was used for all 
histogram adjustments and image modifications. 

Eight image sets were created, (2 environments x 4 error 
dimensions), with each set of images containing both a left error 
and right error variant. With 7 samples/dimension, and an extra 
image (with the objects swapped) to serve as a L/R counterbalance 
the entire stimulus image set consisted of 128 images. Selected 
examples are shown in Figure 3. 

  

   Brightness errors, library scene, left subject, percent changes left to right : -
11.7%,, 0% control, +11.7%. 

   Color temperature errors, library scene, left subject, temp. changes (left to 
right): 2869K, 3200K (control), 3617K. 

   Illumination direction (shading) errors, kitchen scene, right subject, angular 
difference in illumination (left to right): 0 o (control), 15o, 33o, 61o, 73o, 87o, 
105o. 

   Shadow direction errors, kitchen scene, right subject, angular difference in 
shadows (left to right): 0 o (control), 61o, 105o. 

Figure 3. Example image error ranges.  

Procedure 
All stimulus images were printed at 300 dpi on glossy paper 

using a Kodak XLS 8600 dye sublimation printer. Image size was 
at 14 x 10.7 cm.. Each image subtended a horizontal viewing angle 
of approximately 16 degrees. Viewing took place under normal 
office lighting conditions. 

The experiments used a two-alternative forced-choice 
procedure (2AFC), with the two test objects seen next to each other 
in a common image. For each image the observer was asked to 
indicate which object appeared to be more realistic with respect to 
the scene context. Observers sat at desks while taking the tests and 
viewed the images one at a time without time or spatial constraint.  

Image presentation order was randomized across subjects and 
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across all error dimensions. However, the order was constrained so 
that observers never saw two images from the same environment in 
a row. For each error condition, two test images were created, one 
with the error on the right, and one with the error on the left. Each 
subject was presented with a random set of error left/error right 
images, so that the average was 50/50 left vs. right. 

Forty-six observers were tested. All were college students, 
age 19-23. All were naïve to the purposes of the experiment, had 
no knowledge of compositing or perception psychology, and were 
generally in non-technical majors. All had normal or corrected to 
normal vision. Each experimental session lasted approximately 15 
minutes. 

 
Library scene Kitchen scene 

  
Figures 4 and 5. Sensitivity to brightness errors. Upper dotted line indicates the 
correct detection rate at threshold. Lower dotted line is correct detection rate for 
the control stimulus. 

  
Figures 6 and 7. Sensitivity to color temperature errors. Upper dotted line 
indicates the correct detection rate at threshold. Lower dotted line is correct 
detection rate for the control stimulus. 

Results and discussion 
The following sections summarize the results of our 

experiments. The data from each of the conditions are summarized 
in Figures 4 through 13. In each graph the abscissa indicates the 
magnitude of the particular lighting error, and the ordinate 
indicates the percentage of trials on which the observers correctly 
detected the composited object. Detection rates range from 50% 
(pure chance in a two-alternative forced choice procedure) to 
100% (perfect detection). 

Logistic regression methods were used to fit psychometric 
functions to the data. The Chi-Square [30] statistic was used in all 
tests of significance. The Yates’ correction for continuity was 
applied because particular data categories sometimes had low (<5) 
numbers of entries.  

 The detection threshold for each type of error is indicated by 
the upper dotted line in each graph and was determined by testing 
for the smallest significant difference in the psychometric function, 
using the Yates Chi-Square measure (p < 0.05). The lower dotted 
line denotes the detection rate for the null hypothesis (no visible 
difference). 

Brightness errors: Figures 4 and 5 show the results for errors 
in the brightness of the composited object. In the library scene 
(Figure 4), observers were able to reliably detect the composited 
element when the brightness was increased by one step (+3.9%), 
however the effect was asymmetric, and brightness could be 
decreased by three steps (-11.7%) before the error was detectable. 
These effects were significant at the (p < 0.001) and (p < 0.01) 
levels respectively. Thresholds calculated from the psychometric 
function fall between the discrete step levels. 

Sensitivity to brightness errors was somewhat lower in the 
kitchen scene (Figure 5). Here brightness had to be increased by 
three steps to be detected (+11.7%). Sensitivity to brightness 
decrements was the same as for the library scene (-11.7%). These 
effects were both significant at the (p < 0.001) levels. 

These results indicate that brightness errors are detectable 
over the range of magnitudes we studied. Further, the asymmetry 
in sensitivity in the brighter and darker directions found in the 
library scene suggests that we may be more sensitive to positive 
brightness errors. However other factors may also be contributing, 
so further investigation is required before firm conclusions can be 
drawn. 

Color temperature errors: Figures 6 and 7 show the results 
for errors in the chromaticities of the composited object. In the 
library scene (Figure 6), observers were able to reliably detect the 
composited element when the color temperature was shifted by one 
step toward the blue (temp > 3328K), however the color 
temperature had to be shifted by three steps toward the red to be 
detectable. These effects were significant at the (p < 0.001) and (p 
< 0.01) levels respectively. Figure 7 shows that no such effects 
were found in the kitchen scene. Here, over the full range of color 
shifts tested, subjects were never reliably able to detect the 
composited object (p = 0.15). This occurred despite the fact that 
the fruits were highly saturated in color. 

These results suggest that observers’ sensitivity to 
chromaticity errors in lighting composites, depends in part upon 
the subject matter in the scene. The bias toward lower detectability 
of red shifts in the library scene may be due to the fact that shifts in 
this direction are within the acceptable range of human skin tones 
while blue shifts are not. It may also indicate that observers are 
misestimating the subject’s true skin colors or the scene 
illumination (as indicated by the fact that the observers actually 
mistake the subject with a slight red shift (3082K) as the 
uncomposited element. The overall lower sensitivity for color 
shifts in the kitchen scene may also reflect a greater sensitivity for 
changes in relatively the neutral skin tones over other object 
colors. That said, it is likely that color shifts of greater magnitude 
in the kitchen scene would eventually be detectable and that the 
data in Figure 5 actually shows the central section of a shallowly 
sloped bi-directional sigmoid psychometric function. 

Shading errors: Figures 8 and 9 show the results for errors in 
the illumination direction of the composited object. In the library 
scene (Figure 8), observers were able to reliably detect the 
composited element when the illumination direction error 
increased by 5 steps (θ > 98o). This effect was significant at the (p 
< 0.01) level. Figure 9 shows that similar effects were found in the 
kitchen scene. Here, the observers were able to reliably detect the 
composited element when the illumination direction error 
increased by 3 steps (θ > 61o). This effect was significant at the (p 
< 0.001) level.  
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These results suggest that observers are relatively insensitive 

to errors in the direction of illumination in composited objects. 
Note that even though detection levels reached significance with 
respect to the psychometric functions, absolute levels of detection 
only barely exceeded 75%. This finding is in concert with previous 
studies of illumination perception [14], and is an important result 
for the field of image compositing since it suggests that careful 
matching of lighting angles may not be necessary to achieve 
visually acceptable composites. However further studies of these 
effects across a range of scenes and subject classes should be done 
before any firm conclusions are drawn.  

It should also be noted that in the kitchen scene (Figure 9) a 
stimulus bias was found. This can be seen in the fact that the 
detection rate for the control condition is below 50%. This is 
surprising since from a visual inspection, the bowls look identical. 
This may reflect a directional bias in illumination estimation, 
context effects, or other high level factors. We were able to remove 
this effect from our statistical tests by comparing the null condition 
rates for counterbalanced (left, right switched) sets. 

Shadow errors: Figures 10, 11, 12, and 13 show the results 
for shadow direction errors. In contrast to the other errors studied, 
significant differences in performance were found when the 
composited object was on the right vs. the left side so we could not 
combine the data across conditions. One reason for this difference 
is because errors on the left cause the real and composited shadows 
to diverge, while errors on the right cause the shadows to 
converge.  

Figures 10 and 11 show that in the library scene, overall 
sensitivity to shadow direction errors was low. Regardless of 
whether the composited object was on the left (diverging shadows, 
Figure 10) or the right (converging shadows, Figure 11) shadow 
direction errors were never reliably detected.  

We found similar results for the kitchen scene when the errors 
caused diverging shadows (Figure 12). Once again shadow 
direction errors were never reliably detected. However the 
situation was quite different when the errors caused converging 
shadows (Figure 13). Here, shadow direction errors were reliably 
detected when the angular disparity exceeded 1 step (θ > 15o). This 
effect was significant at the (p < 0.05) level. However the 
significance of this result should be weighed against the 
observations that the data is noisy, variance is high, and overall 
levels of detectability are relatively low, only reaching 80% in one 
case. 

Overall the results suggest that sensitivity to shadow direction 
errors in composites is relatively poor. In the library scene 

direction error were never detectable. In the kitchen scene (where 
arguably the shadows were more salient), the differences in 
performance for the diverging and converging shadow conditions 
can be explained by the fact that while diverging shadows are quite 
common in the real world, and are created from singular or 
clustered light sources, converging shadows hand are much less 
likely, and for closely spaced objects can only be created using 
multiple carefully balanced light sources. The greater sensitivity 
the observers showed in the converging shadow condition in the 
kitchen may be because the error is more detectable because the 
illumination conditions are less likely. Further investigation of this 
issue is warranted. 

 
Library scene Kitchen scene 

  
Figures 10 and 11. Sensitivity to shadow errors  in the library scene. (Left: 
diverging shadows, Right: converging shadows)Upper dotted line indicates the 
correct detection rate at threshold. Lower dotted line is correct detection rate for 
the control stimulus. 

  
Figures 12 and 13. Sensitivity to shadow errors in the kitchen scene. (Left: 
diverging shadows, Right: converging shadows) Upper dotted line indicates the 
correct detection rate at threshold. Lower dotted line is correct detection rate for 
the control stimulus. 

Conclusions and Future Work 
In this paper we presented the results of a series of 

psychophysical experiments to measure visual sensitivity to four 
kinds of lighting errors that occur in image compositing. We found 
threshold measures for the detectability of the different classes of 
errors in two representative scenes. The results show that the 
sensitivity to errors varies both with the type of error and the 
subject matter of the scene. Also, while observers are reasonably 
sensitive to discrepancies in the image statistics of the composited 
and context regions of the images (pixel errors: brightness, color 
temperature) observers appear to be less sensitive to cue errors 
(shading/shadow direction) that leave the image statistics 
unchanged but introduce conflicting information for the lighting 
conditions in the scene. These studies represent some first steps 
towards developing perceptual metrics of illumination errors in 
image compositing that can be used to facilitate the compositing 
process.  

While the results are interesting, it should be emphasized that 

Library scene Kitchen scene 

  
Figures 8 and 9. Sensitivity to illumination direction (shading) errors. Upper 
dotted line indicates the correct detection rate at threshold. Lower dotted line is 
correct detection rate for the control stimulus. 
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this work is preliminary, and that the primary goals of this paper 
are 1) to raise consciousness about the different categories of 
lighting errors in image compositing; 2) to show that different 
perceptual mechanisms with different sensitivities are involved in 
their processing; and 3) to suggest that different perceptual metrics 
are needed to quantify the different classes of errors. However 
much more work needs to be done before generally applicable 
perceptual metrics can be developed, and caution should be used in 
applying the specific findings of our experiments in practice. 

 There are many avenues of further exploration within this 
topic. First, we have only explored a subset of lighting errors in 
image compositing. At least two other lighting properties, such as 
the area of the light source, and the key-to-fill ratio (approximately 
the ratio of direct to indirect illumination) will likely have similar 
impacts on the realism of the compositing process. Second, testing 
over a larger number of scenes and objects should allow stronger 
conclusions about how scene content affects tolerance for lighting 
errors in compositing. Finally since compositing is widely used in 
filmmaking, scene dynamics will likely play an important role in 
the realism of composites, and understanding when dynamics hide 
and highlight errors would be very valuable to practitioners. These 
findings would add to our basic understanding of the limits and 
capabilities of visual perception and contribute the high level goal 
of developing sound perceptual metrics to improve the fidelity and 
efficiency of the compositing process. 
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