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Abstract 
The limitation of a low dynamic range in a digital still 

camera causes coarse color reproduction in darker regions of the 
output images, requiring contrast correction. Recently, local 
correction techniques are preferred to prevent unintended contrast 
enhancement from global correction methods. A multi-scaled 
retinex is a representative method, resulting in high quality output 
images. However, the sizes of the Gaussian filters and weights are 
determined empirically, regardless of the image, even though 
suitable sizes and weights corresponding to the respective image 
will induce a better quality. Accordingly, this paper proposes an 
adaptive multi-scaled retinex using a Gaussian filter set relative to 
the input image. First, the weight of the largest Gaussian filter is 
determined by the local contrast ratio from the intensity 
distribution of the input image. The other Gaussian filters and 
corresponding weights are then determined using a visual contrast 
measure(VCM) and halo measure. The VCM is obtained based on 
the local standard deviation and locally averaged luminance for 
several test images, while the halo measure is obtained based on 
the average of the maximum color differences for patches in the 
Macbeth color checker. Through an analysis of the VCM and halo 
measure, the sizes and weights of the Gaussian filters are then 
determined. In addition, the chroma is compensated to overcome 
the graying-out phenomenon due to a multi-scaled retinex. In 
experiments, the proposed method was found to improve the local 
contrast and saturation naturally. 

Introduction 
Human vision is a complicated automatic self-adaptation 

system that is capable of seeing over five orders of magnitude 
simultaneously, while also perceiving details in both bright and 
dark regions[1,2]. In contrast, current color imaging display 
devices, such as digital cameras, are unable to capture a dynamic 
range of real scene, resulting in poor scene detail and color 
reproduction in dark areas, especially in the case of a scene 
containing both bright and dark areas. Thus, the contrast of an 
image captured by a digital camera needs to be adjusted to 
represent the viewer's perception of the natural scene[3-4]. 

A single-scale retinex(SSR) model, based on the retinex 
theory as a model of human vision perception, was recently 
developed[5]. However, this model produces halos artifact and 
desaturation which is defined as “graying-out” in our paper 
according to the size of the Gaussian filter, which is varied in 
relation to the input image. To overcome these problems, a multi-
scaled retinex(MSR) algorithm was proposed by Jobson that uses 
different sizes of Gaussian filter and corresponding weights[6-8], 
where a small-size Gaussian filter is used for local contrast and 
details, causing an increase of artifacts, whereas a large-size 
Gaussian filter is used to smooth and suppress the artifacts. Finally, 

several images from various single-scaled retinex algorithms with 
various sizes of Gaussian filter are weighted and summed to 
reduce the halos and enhance the local contrast. However, there is 
no method for optimizing the sizes and weights of the Gaussian 
filters in a multi-scale retinex model, which are currently just 
determined through subjective evaluation. 

Therefore, this paper proposes an adaptive multi-scale retinex 
that determines the size of the Gaussian filters and corresponding 
weights according to the intensity distribution of the input image. 
The weight of the largest Gaussian filter is established as the 
distribution of the local luminance in the input image. The sizes 
and weights of the Gaussian filter set for the multi-scale retinex are 
then determined using a visual contrast measure and halo measure. 
The visual contrast measure is obtained based on the product of the 
local standard deviation and locally averaged luminance of the 
image[6]. Meanwhile, the maximum color differences are used to 
evaluate any halo artifacts generated in large uniform regions with 
a high contrast edge, where these values are obtained as an average 
of the color values for each color patch in the Macbeth color 
checker. The parameters for the Gaussian filters and weights are 
then determined considering the visual contrast and halo measures. 

Multi-scaled retinex model 
An SSR is performed with a Gaussian filter, which is used to 

estimate the illuminant component. The reflectance is then 
calculated based on the difference between the original and 
Gaussian-filtered image as follows:  
  

log ( , ) log ( , ) log ( , )I x y R x y L x y     (1) 

 
where R(x,y) is the reflectance at point (x,y), L(x,y) is the 
irradiance, i is the RGB channel, and F(x,y) is the Gaussian filter 
given by 
 

2 2( )/( , ) and ( , ) 1x yF x y Ke F x y dxdy      (2) 

 
where σ is the standard deviation for the Gaussian function.  

An MSR was then introduced to prevent the halo artifacts 
produced by an SSR[5]. The MSR model adopts Gaussian filters 
with various scales and corresponding weights using the following 
computations[6-8]: 
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Figure 1. Resulting images by SSR and MSR. (a) input image, (b) SSR with 

σ = 5, (c) SSR with σ = 240, and (d) MSR 

 
where wn represents the weight for the n-th scale. Fig.1 compares 
the resulting images when using an SSR with different sizes of 
Gaussian filter and an MSR. In Fig. 1(b), the use of an SSR with a 
small-scale Gaussian filter results in details and halo artifacts with 
graying out. In Fig. 1(c), the effect of using a large-scale Gaussian 
filter results in more chromaticity information. 

In Fig. 1(d), the MSR is very efficient in improving the detail 
and local contrast of the shadow. However, there is no established 
method for selecting the appropriate Gaussian filter set and 
corresponding weights. Thus, halo artifacts can be caused by the 
combination of the filters and corresponding weights. In addition, 
the weighted sum of the SSR images can cause graying-out in the 
resulting image. 

Visual contrast measure 
The sizes and weights of the Gaussian filters used for an MSR 

are usually determined empirically, resulting in a different quality 
according to the image. Therefore, this study adopts two measures: 
the visual contrast measure (VCM) and halo artifact measure. 

The general idea behind the VCM is that a good visual 
representation usually combines a high regional visual lightness 
and contrast[6]. First, the input image is blocked based on the 2˚ 
viewing angle of the viewing angle of the fovea [9], as the regional 
scale is sufficiently granular to capture the visual sense of the 
regional brightness and contrast. The VCM is then computed by 
taking the mean of the regional standard deviations, thereby 
providing a gross measure of the regional contrast variations as 
follows: 
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Figure 2. Test images for VCM and halo measure. 

 
Figure 3. VCM from SSR with various size of Gaussian filters 

 
Figure 4.  VCM according to the size of the large Gaussian filter in MSR 

 
 

where k is the index of the blocks, N is the number of blocks, mk is 
the mean of the k' th block, and sk is the standard deviation of the k' 
th block. 

Fig. 2 shows the standard test images used to evaluate local 
contrast enhancement algorithms. Fig. 3 shows the VCM 
evaluation of the test images after using an SSR with various sizes 
of Gaussian filter. Whereas the VCM changed sharply when using 
a Gaussian filter under σ=50[pixel], it converged to a certain value 
when using a Gaussian filter over σ=100[pixel], indicating that the 
small Gaussian filter needed to be under σ=50[pixel] to enhance 
the contrast.  

Meanwhile, the variation of the VCM according to the size of 
the large Gaussian filter is shown in Figure 4. For several 
combinations with a small- or middle-size Gaussian filter, the 
variation of the VCM according to the size of the large Gaussian 
filter was only slight, indicating that instead of contrast 
enhancement, the focus for selecting the large Gaussian filter 
needs to be on reducing the halo artifacts and stabilizing the 
resulting image. 

Halo artifacts measure 
Depending on the size and weight of the smaller Gaussian 

filter, halo artifacts occur between the center of a uniform area and 
the edge of the area. Thus, since the Macbeth color checker[9] 
consists of uniform patches between black-bold edges, it was used 
to evaluate the halo artifacts based on the maximum color 
difference between each pixel and the averaged color in a patch in 
CIELAB standard color space as follows[10]: 

 

 * * 2 * * 2 * * 2
, , ,max ( ( , )) ( ( , )) ( ( , ))k m k k m k k m k kh L L x y a a x y b b x y          (6) 

 
where k is the index of the patch, L m,k, a m,k  and b m,k  

represent the mean of the CIELab color in the k'th patch, and  
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Figure 5. Averaged maximum color differences with various Gaussian filters 

 
Lk(x,y), ak(x,y), and bk(x,y) represent the color at the (x,y) 

position of the k'th patch. Finally, the overall halo artifact measure 
was obtained as the averaged-maximum color differences: 
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where N is the number of patches. As human vision usually don’t 
perceive a color difference under 3 in CIELAB color space for 
displays, only Gaussian filter and weight sets with an averaged 
maximum color difference under 3 were considered [10]. 

Figure 5 shows the averaged maximum color differences for 
the test images after using an SSR with various sizes of Gaussian 
filter. In the case of a Gaussian filter under 80, the color difference 
was more than 3, resulting in halo artifacts. 

Adaptive multi-scaled retinex considering 
intensity distribution of input image 

When using an MSR, the local contrast should be controlled 
based on the input image to reduce unnecessary contrast. Thus, to 
judge the condition of the input image, a normalized standard 
deviation of the local luminance is used as follows: 
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where k is the index of the divided images, mk represents the 
average luminance of the k'th sub-image, N is the number of sub-  
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Figure 6. Variation of P according to image contrast and luminance. 
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Figure 7. Average of maximum color difference. 

 
images, and ma indicates the average luminance of the input image. 
In the case of a low luminance and high difference for the local 
luminance, P is close to 0 and vice versa in the opposite case. 

Figure 6 shows P for six input images. With a higher local 
contrast, P also increased. Thus, the value of P can be used as the 
weight for the large Gaussian filter to control the contrast 
enhancement with an MSR. 

Next, when considering the halo artifacts, Fig. 7 shows the 
halo measure for the first image in Fig. 6 when varying the weight 
of the large Gaussian filter and keeping the other filters fixed. The 
results show that the weight of the large Gaussian filter needs to be 
higher than that of the small Gaussian filters. However, when 
using a multi-scale retinex model with n Gaussian filters, the halo 
artifacts were reduced by limiting the weight of the large Gaussian 
filter to the value of P, ranging from 0.5 to 1, as follows: 

 
( 1) 1

L

n P
w

n

 
     (10) 

 
where n indicates the number of Gaussian filters included in the 
MSR. From the results of the halo measure, the size of the large 
Gaussian filter needs to be more than 200 to reduce the halo 
artifacts. In addition, the weight of the large Gaussian filter is 
determined using the local luminance distribution of the input 
image. 

Meanwhile, the sizes and weights of the other Gaussian filters 
are determined based on the VCM and halo artifact measure using 
an iterative process. The number of Gaussian filters is pre-
determined by computing the VCM. In Figure 8, the VCM was 
used to evaluate ten test images with several combinations of 
Gaussian filters and weights, where the weight for the large 
Gaussian filter was more than the sum of the other weights. As a 
result, the VCM was found to be higher when using three Gaussian 
filters, than when varying or using more than four filters. 
Therefore, three filters are used for the proposed method. 

To check the halo artifacts, the color difference is computed 
using the Macbeth color checker with various sizes and weights of 
filter. First, the weight was sampled using a 0.1 step. The large 
size filter was limited to 0.3 to reduce the halo artifacts, while the 
weights for the small and middle size filters were never the same. 
As a result, nine weight combinations were considered: W1=(0.33, 
0.33, 0.33) [6], W2=(0.1, 0.4, 0.5), W3=(0.4, 0.1, 0.5), W4=(0.2, 
0.3, 0.5), W5=(0.3, 0.2, 0.5), W6=(0.1, 0.3, 0.6), W7=(0.3, 0.1, 
0.6), W8=(0.1, 0.2, 0.7), and W9=(0.2, 0.1, 0.7). Fig. 9 shows the 
averaged maximum color difference for each weight combination. 
The combinations with a color difference under 3 were initially 
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(a)                                                             (b) 
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(c)                                                            (d) 

Figure 8. VCM with different number of Gaussian filters. (a) two, (b) three, (c) 
four, and (d) five. 
 

 

 
Figure 9. Averaged maximum color difference for each weight combination 

 
selected to reduce halo artifacts. The Gaussian filter sets with 

the maximum VCM were then determined, as presented in Table 1. 
Consequently, the Gaussian filter set was determined as 2, 4, and 
240 based on the results in Table 1. While the weights of the large 
Gaussian filter were determined by the local luminance 
distribution of the input image, the weights of the small and 
middle Gaussian filters were compared with the normalized VCM 
values in figure 10. As shown in figure 18, the weight 
combinations with the highest VCM and 3 lowest maximum color 
differences were selected as (0.3, 0.2, 0.5), (0.3, 0.1, 0.6), and (0.2, 
0.1, 0.7). These combinations are then used in the proposed 
method. 

Chroma compensation 
As previously mentioned, an MSR induces graying out when 

the images are merged. Thus, to overcome this problem, the 
chroma ratio between the current chroma and the maximum 
chroma in CIELab color space is preserved according to the 
lightness variation in the MSR in Fig. 11 as follows: 
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Table 1: Gaussian filter set with maximum VCM 
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Figure 10. Normalized VCM with different set of filters. 
 
where CLo,max is the maximum chroma value corresponding to the 
lightness, Lo, and CLi,max is the maximum chroma value 
corresponding to the lightness, Li. 

Experiment and evaluations 
Figs. 12 and 13 show the original and resulting images when 

using a conventional MSR, the MSR developed in our previous 
work[9], and the proposed MSR with chroma compensation. As 
shown in Fig. 12(d), the proposed method prevented the color 
changes and graying out for the sky that resulted from the 
conventional MSR method, and enhanced the details in the shadow 
areas. 

In Fig. 13, the conventional method distorted the color of the 
cabin with cyan and reduced the saturation. However, in Fig 13(c), 
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Figure 11. Chroma compensation according to variation of lightness. 

 
the cabin is brown. Thus, the proposed method reproduced high 
quality images without any halo artifacts. 

Conclusions 

This paper proposed an adaptive multi-scaled retinex that uses 
Gaussian filters selected according to the intensity distribution of 
the input image. The proposed method solves the unstable output 
of an MSR according to the luminance distribution of the input 
image, causing over-enhancement of the contrast and an unnatural 
saturation. Two measure factors are adopted: the visual contrast 
measure and maximum color difference. Also, the standard 
deviation of the local luminance in the input image is used for the 
weight of the large Gaussian filter. Considering the impact of the 
color difference on the generation of halo artifacts, the sizes and 
weights of the Gaussian filters producing a higher visual contrast 
measure are determined using test images. Furthermore, the 
chroma is compensated by preserving the chroma ratio of the input 
image based on the maximum chroma values of standard sRGB 
color space in the lightness-chroma plane. 
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Figure 12. Resulting images. (a) input image, (b) conventional MSR, (c) 

proposed MSR, and (d) proposed MSR with chroma compensation. 
 

   
(a)                                                     (b) 

   
(c)                             (d) 

Figure 13. Resulting images. (a) input image, (b) conventional MSR, (c) 

proposed MSR, and (d) proposed MSR with chroma compensation. 
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