
Optimized Construction of ICC Profiles by Lattice Regression

Eric Garcia, Maya Gupta; Dept. of Electrical Engineering, University of Washington; Seattle, WA

Abstract
We focus on a recently proposed regression framework

termed lattice regression, as applied to the construction of multi-

dimensional color management look-up tables from empirical

measurements. The key idea of lattice regression is that the con-

struction of a look-up table should take into account the interpo-

lation function used in its final implementation. Lattice regres-

sion solves for the look-up table (LUT) that minimizes the error of

interpolating the empirical measurements (training samples) and

regularization is added to promote smoothness and enable extrap-

olation. The main contribution of this paper is the proposal and

analysis of using the thin-plate regularizer for lattice regression to

produce smooth and accurate color transformations. Experiments

with a consumer inkjet and laser printer show that the proposed

regularizer obtains similar accuracy to the previously-proposed

(and more complicated) combination of Laplacian and global-

bias regularizers, and that both can create significantly more ac-

curate and smoother results than a state-of-the-art locally linear

approach.

Estimation for Color Transformations
It is common to transform colors between colorspaces and

devices by first characterizing the transformation with a look-up

table (LUT), and then interpolating the LUT to transform new

color values. The LUT can be specified in an International Color

Consortium (ICC) profile, which is part of a standard color man-

agement workflow. In this paper we consider the estimation ques-

tion of how to best specify a LUT to characterize a color transfor-

mation.

Recently, we proposed a new approach called lattice regres-

sion for learning a LUT from sample pairs of input and output

colors that takes into account that the LUT is interpolated at run-

time [6, 7], but that preliminary work required a complicated reg-

ularizer in order to perform well in practice. In this paper, we

show that similar results can be achieved using the more elegant

thin-plate regularizer [8].

For simplicity, and because it is a common case, we refer

throughout to the input color space as CIELAB and the output

color space as RGB, but everything applies to transformations be-

tween any two colorspaces. We call the LUT defined over the in-

put color space the lattice a, which has vertices {a1,a2, . . . ,am},

where each vertex ai ∈ CIELAB. Then the goal is to learn the

output RGB color for each ai. We treat each of the output color

planes separately so that the output color corresponding to vertex

ai is the scalar color value bi ∈ [0,255].
Printing a calibration target results in data pairs {xi,yi},

where xi ∈ CIELAB, yi ∈ [0,255] and i = 1...n, where n is the

number of color patches in the calibration target.

The standard approach to learning a color transformation is

to first fit a function to the data pairs {xi,yi} to produce an es-

timated function f̂ that maps CIELAB to [0,255]. Then, the es-

timated function f̂ is evaluated at the the vertices of the lattice.

That is, the estimated output value for ai is b̂i = f̂ (ai). Mathemat-

ically, the estimated function f̂ is chosen to minimize the sum of

some loss function, usually squared error as shown here:

f̂ = arg min
f∈F

n

∑
i=1

(f (xi)−yi)
2, (1)

where F is a set of allowed functions. For example, standard

least-squares linear regression is (1) with F being the set of all

linear functions f (x) = β T x+β0. Neural nets, decision trees, and

support vector machine regression and other standard approaches

to regression can be written as (1) for different choices of F ,

sometimes with a different loss function than squared error, and

sometimes with additional regularization terms that are indepen-

dent of the data but add a preference for smoother functions in

the function class F . Many such regression methods have been

compared for learning ICC profiles [1, 2, 11]. Bala’s experiments

showed that the best accuracy was obtained with a local linear re-

gression [2]. Roughly 20% improvement in median accuracy was

achieved over local linear regression using the enclosing neigh-

borhood definition and ridge regularization [9], and further accu-

racy improvements were shown if the ridge regularizer was re-

placed by a Tikhonov regularizer [10].

Another metric in the creation of ICC profiles is whether

smooth images input to the LUT appear smooth after the LUT

interpolation [14, 15].

Lattice Regression
The problem with the standard approach described by (1)

is that the LUT will be interpolated at run-time to actually es-

timate output color values for an image, and this interpolation

step is not taken into account in fitting the function by (1). For

example, if one used the LUT to estimate the appropriate RGB

color for a training sample xi, the output of the lookup table is

not f̂ (xi), rather it is the interpolation of xi from the vertex-output

pairs {(ai, b̂i)} that surround xi. Thus, the error being minimized

in (1) does not represent the true error produced by the LUT.

Lattice regression takes into account the LUT interpolation,

and directly chooses the m×1 vector of output values b such that

the interpolated training CIELAB colors will be close to their cor-

responding RGB output values. A training point xi in CIELAB

falls in a cell of the lattice with eight vertices; the jth vertex in the

lattice is given a linear interpolation weight wi j ≥ 0, where wi j = 0

if a j is not a vertex of the cell containing xi, and otherwise wi j is

set so that linear interpolation equations hold: ∑ j wi ja j = xi, and

∑ j wi j = 1 (see [6] for more on calculating linear interpolation

weights). The LUT then interpolates the input CIELAB value xi

as ŷi = ∑ j wi jb j .

Lattice regression minimizes the post-interpolation error on

the training data. That is, it chooses the m× 1 vector of output

18th Color Imaging Conference Final Program and Proceedings 353

values b̂ that solve,

b̂ = arg min
b∈[0,255]m

n

∑
i=1

(ŷi −yi)
2 .

= arg min
b∈[0,255]m

n

∑
i=1

((

∑
j

wi jb j

)

−yi

)2

. (2)

To write (2) more compactly, let W ∈ [0,1]n×m denote the

matrix with ith- jth element wi j. Then given n training inputs {xi}

and their corresponding linear interpolation weights W , the LUT

interpolates a vector of n output values ŷ = Wb. If we let y be

the n× 1 vector of corresponding output values, then the lattice

regression objective (2) can be succinctly expressed,

b̂ = arg min
b∈[0,255]m

‖ŷ−y‖2
2.

= arg min
b∈[0,255]m

‖W b−y‖2
2. (3)

Conveniently, (3) has a closed-form solution:

b̂ = (W TW)−1W T y, (4)

and because W is sparse, the matrix inversion can be com-

puted efficiently by sparse Cholesky factorization (for instance

the ldivide command in Matlab).

In related work by Bala [3], a LUT is learned and then ad-

justed to correct for the interpolation error using an iterative tech-

nique. A similar iterative method was proposed by Tobler for

a similar regression problem in geospatial analysis [16]. More

recently, Monga and Bala [13] proposed a joint optimization of

lattice node location as well as node output values and the opti-

mization for node output values is as given in (4). However, our

contribution is the proposal and analysis of regularization terms

that can be added to solve (3) when it is underdetermined.

Incorporate Additional Constraints
A key advantage of this approach is that because the lattice

output values are being directly estimated, it is straightforward to

add constraints to the LUT that are appropriate for color manage-

ment. For printers it is common to want saturated bright input

color values to print as pure ink colors, for example, one may

desire that the CIELAB input [100,0,0] be mapped to the pure

white RGB printer input [255,255,255], and that the CIELAB in-

put [80,0,100] be mapped to the pure yellow RGB printer input

[255,255,0]. This kind of constraint is easily incorporated into the

lattice regression objective by treating these as training pairs and

setting a large relative weight for these particular points within the

outer summation of (2). Another type of constraint is to require

that a subset of the nodes share the same output value, for instance

one could force all inputs with L∗ < 10 to produce the same RGB

value, in order to reduce color noise in dark areas of images. For

artistic purposes, one can also constrain the allowed set of output

RGB values, for example, to create sepia-toned images one can

allow the learned output values to be restricted to the sepia-ramp

for that printer.

Regularization Needed
The minimization of (2) is not, in general, a well-posed prob-

lem. For a LUT node belonging to a cell that do not contain train-

ing samples, any output value will result in the same objective

function cost. Mathematically, this problem is underdetermined.

Prior knowledge about the nature of the underlying color trans-

formation should be added to (3) in order to set the value for such

nodes. Specifically, one expects the color transformation to be

somewhat smooth, and we encode this information as a regular-

ization term that prefers to give close LUT nodes output values

that are also close (in some sense). Adding such a regularization

term will also reduce the probability of overfitting any noise in the

training data measurements, and will lead to an overall smoother

transformation.

First, we review our previous regularization approach to en-

force smoothness which required two regularization terms [6, 7],

then in the following subsection we propose using the thin-plate

regularizer instead and explain why it is a more elegant solution.

Laplacian and Global Bias Regularizers
The lattice formed by the LUT can be represented as a graph

with edges connecting adjacent nodes in the lattice. A standard

approach to enforcing smoothness on the nodes of a graph is to

minimize the graph Laplacian [12], which can be expressed as the

sum of squared differences between the values at adjacent nodes

in a graph, that is:

JL(b) = ∑
adjacent ai,a j

(bi −b j)
2

= bT Lb, (5)

where the graph Laplacian L is the diagonal degree matrix of the

graph minus the adjacency matrix of the graph.

Solving for a lattice that minimizes the empirical risk (2) and

also minimizes the Laplacian given by (5) forces the values cho-

sen for adjacent nodes in the lattice to be close, and is expressed

as:

b̂ = arg min
b∈[0,255]m

‖W b−y‖2
2 +λJL(b), (6)

where the regularization parameter λ > 0 trades-off the two goals.

Just as with (4), the solution to (6) has a closed form that can be

efficiently computed via sparse Cholesky factorization.

The top plot of Fig. 1 shows an example of training sam-

ples (blue dots) and the function estimated by interpolating a lat-

tice learned by (6). In this example, the regularization parameter

was (optimistically) chosen to minimize the test error on a set of

test samples (not shown) that were drawn independent from the

training samples. For LUT nodes that comprise cells that do not

have any training data, the Laplacian regularizer pushes their out-

put values to be the mean of nearby training points. This effect

is seen as the flat parts at the edge of the interpolated function

shown in Fig. 1. For learning color transformations, we found

that this could be problematic near the edge of the gamut. Also,

the Laplacian regularizer pushes all the lattice output values to-

wards the mean value of the training samples, which can lead to a

slight decrease in contrast.

To lessen these problems, we proposed adding a global bias

term that would help the lattice regression extrapolate [6, 7].

Specifically, the global bias term regularizes the lattice regres-

sion estimate of the lattice outputs b towards some other estimate

of the color transformation f̂ . For example, solve (1) for some

function class F to produce an estimate f̂ . To be a useful global

354 ©2010 Society for Imaging Science and Technology

bias term, F needs to be an extrapolating function class, but it

can be a rather poor estimate, for example, one might fit the best

linear function to the training data. With this global bias, and let-

ting f̂ (a) be the n× 1 vector with ith element f̂ (ai), the lattice

regression problem is expressed:

b̂ = arg min
b∈[0,255]n

‖W b−y‖2
2 +λJL(b)+λg‖ f̂ (a)−b‖2

2, (7)

where λg > 0 is the regularization parameter on the global bias

term. With the addition of these two regularizers, the optimization

given in (7) still has a closed-form solution; for details see [6]. In

our previous work and in the comparisons in this paper, we used

a trilinear function for the global bias; again, for details see [6].

If only a little weight λg is put on the global bias term, then

it will have a weak effect on most vertices, but it will help the

function extrapolate for vertices that are far from the training data.

If a large weight λg is put on the global bias term, then the fitted

lattice will be close to the f̂ , and the lattice regression acts more

like a correction to f̂ , observing that the applied lattice will be

interpolated.

The performance of (7) is impressive [6], but the dual-

regularization is awkward in that both regularization parameters

must be chosen, and a separate function f̂ must be estimated.

Using the Thin-plate Regularizer
The main contribution of this paper is in showing that the

thin-plate regularizer can be used with lattice regression as a re-

placement for the dual-action of the previously proposed regular-

ization terms. In addition to removing one parameter from the

model, the new regularization approach employs a more rigorous

mathematical notion of smoothness as well.

Before introducing the new regularizer, it is helpful to further

analyze the net effect of the two previously proposed regulariz-

ers. First, the Laplacian term (5) penalizes the squared difference

of neighboring vertices only, thus imposing a first-order sense

of smoothness. This first-order concept of smoothness considers

only constant functions to be perfectly smooth (that is, JL(b) = 0

only when bi = b j for all i, j) and any linear trend in the fitted

model is penalized. The global bias term corrects for this often-

undesirable penalty by encouraging the fitted function to also not

stray far from the global trilinear trend of the data. Combined, the

two terms approximate a second-order sense of smoothness in an

ad-hoc way by first penalizing all variation (including linear vari-

ation) and then decreasing the penalty on those linear variations

that align to the global trend of the data. The proposed thin-plate

regularization, however, encodes a second-order sense of smooth-

ness directly with a single term.

The thin-plate regularizer [8], adapted from the litera-

ture on multi-dimensional splines, provides a convenient and

mathematically-precise notion of second-order smoothness that

fits into the existing structure of lattice regression. While the con-

ceptual notion of the thin-plate regularizer is simple to grasp, the

form used in computation is difficult to arrive at. Therefore, we

will begin by focusing on the conceptual definition and provide

the implementation details primarily for reference.

In physical terms, the thin-plate regularizer JK(f) measures

the amount of energy required to bend a (differentially) thin plate

into the form of the function f , where f is the result of inter-

polation from the lattice. Importantly, linear trends of f go un-

Lattice Regression with JL

Lattice Regression with JL and Global Bias

Lattice Regression with JK

Figure 1. Figure illustrates the extrapolation effect of the different regular-

izers when combined with the lattice regression empirical risk minimization.

The training data (blue dots) used to fit each of the models was the same in

all cases, and was drawn from a Gaussian Mixture Model.

penalized by this energy. The second-order nature of this regular-

izer is more directly seen in the integral definition, which shows

that one is regularizing the total second-order derivative of f in

all directions:

JK(f) =
∫

L∗

∫

a∗

∫

b∗

(∂ 2

∂L2
f 2 +2

∂ 2

∂L∂a
f 2 +2

∂ 2

∂L∂b
f 2+

+
∂ 2

∂a2
f 2 +2

∂ 2

∂a∂b
f 2 +

∂ 2

∂b2
f 2
)

db∗da∗dL∗.

(8)

Next, we will show that for interpolation that is linear in the lattice

outputs, the thin-plate regularizer can be concisely written as

JK(b) = bT Kb (9)

18th Color Imaging Conference Final Program and Proceedings 355

for a particular m×m matrix K that depends only on the type of

interpolation basis function and the lattice dimensions. Impor-

tantly, K it needs to be computed only once for a given lattice

structure (for example, once for all 17×17×17 regular rectangu-

lar lattices), as it does not depend on any data values.

Combining (9) with (3), we arrive at the proposed objective:

b̂ = arg min
b∈[0,255]m

‖W b−y‖2
2 +λJK(b). (10)

Again, this can be solved in closed form and the sparsity of the

involved matrices lends an efficient solution.

In Fig. 1 , the effect of the thin-plate regularizer is com-

pared to the previous Laplacian and global-bias regularizers for a

simulated dataset drawn from a Gaussian mixture model. We see

that the Laplacian regularization JL alone (top plot) has the effect

of forcing the function values toward the mean when extrapolat-

ing from the training samples. This is corrected for somewhat by

the addition of the bias term (middle plot), but using JK (bottom

plot), one sees entirely different behavior with more linear extrap-

olations.

Computing K for the Thin-Plate Regularizer
This subsection details how to compute the matrix K in (9).

First, note that both linear interpolation and cubic interpolation of

a point x∈CIELAB given the lattice {a j,b j}
m
j=1 can be expressed

as

f (x;{a j ,b j}
m
j=1) =

m

∑
j=1

k(x,a j)b j,

where k : CIELAB×CIELAB→R is known as the basis function

associated with the function class of f (the k for linear interpola-

tion and cubic interpolation differ). We would like to directly

apply the thin-plate penalty to linear interpolation, but, due to

discontinuities, this does not produce a twice-differentiable func-

tion and thus the thin-plate regularizer (8) can not be computed

for it. Instead, we compute the thin-plate regularizer for the cu-

bic interpolation kernel. The resulting JK(b) regularizer will pre-

fer lattice outputs b that are smooth in the thin-plate sense (8) if

cubic-interpolated, but even under linear interpolation we expect

the effective function to have a similar shape.

For x ∈ CIELAB, the kernel for tricubic interpolation can be

written as

k(x,a j) = ∏
ν∈{L∗,a∗,b∗}

δν j

(

(x)ν

)

where (·)ν extracts the ν ∈ {L∗,a∗,b∗} coordinate of a vector and

with

δν j(u) = δ̃

(

∣

∣u− (a j)ν

∣

∣

hν

)

,

for u ∈ R where hν ∈ R is the spacing of the lattice in the ν
coordinate. This expression can be interpreted as centering and

scaling the following one-dimensional cubic interpolation kernel

about the j-th lattice node for u ∈R:

δ̃ (u) =











1.5u3
−2.5u2 +1 if 0 ≤ u < 1

−.5u3 +2.5u2
−4u+2 if 1 ≤ u < 2

0 otherwise.

The kernel matrix K has the (i,j)-entry

Ki, j =
2

∑
s=0

2−s

∑
t=0

ω(s,t) DL
(s)
i, j Da

(t)
i, j Db

(2−s−t)
i, j ,

where

ω(s,t) =

{

2 if s = 1 or t = 1

1 otherwise

weights the cross-components with the value 2 and where

Dν
(s)
i, j =

∫

δ
(s)
νi (ν ′)δ

(s)
ν j (ν ′)dν ′ (11)

with f (s) denoting the s-th derivative of the function f .

Because δ is piecewise-polynomial, (11) can be computed

algebraically. Furthermore, the computation of K is decoupled

from the lattice values b, and can thus be pre-computed once for

a particular lattice size and reused indefinitely.

Experiments
Accuracy and smoothness experiments were performed to

compare lattice regression with JK regularization to lattice re-

gression with JL + global-bias regularization, and to Tikhonov-

regularized local linear regression [9, 10].

Experimental Details
Each of the three methods has a regularization parameter

that must be trained to determine how much the regularizer is

weighted compared to the empirical error. Choices for the cross-

validation parameters were based on previously published papers

and preliminary experiments, and are detailed in Table 1.

Table 1. Cross-validation Parameter Choices

λ λg

Lattice JK {1e-8,1e-7,. . . ,1e0} n/a

Lattice JL+bias {1e-6,1e-5,. . . ,1e2}× {1e-8,1e-7,. . . ,1e0}
Tikhonov {1e-4,1e-3,. . . ,1e4} n/a

All lattices were 17 × 17 × 17 ranging from L ∈ [0,100],
a ∈ [−100,100], and b ∈ [−100,100]. Training data was pro-

duced for each printer by printing the Gretag MacBeth TC9.18

RGB target, which consists of 918 color patches, of which 789

form a 9× 9× 9 grid in the RGB space, and the remaining 189

samples are neutral ramps and bright saturated colors. All prints

were measured with an X-Rite iSis spectrophotometer, using D50

illuminant at a 2o observer angle and UV filter. Preliminary ex-

periments of the stability of the spectrophotometer showed that

the variance of repeated measurements averaged over 918 color

patches was less than .1 ∆E2000.

All the 3D LUTS were preceded by the 1D gray-calibration

LUTS for each color channel, as described by Bala [2]. The 1D

LUTS were the same for all experiments for each printer, and

were estimated using Tikhonov-regularized regression method [9,

10] with a regularization parameter λ = 1.

For each printer, a randomly generated set of RGB values

was printed and measured, forming an independent set of RGB

→ CIELAB pairs. This set provided a dual purpose in our exper-

iments. The first role is as a test set; since the CIELAB values are

356 ©2010 Society for Imaging Science and Technology

guaranteed to be within the gamut of each printer, we use the set

to assess the color accuracy of the constructed LUTs. That is, the

LUT is applied to the CIELAB values, producing R̂GB which is

sent to the printer and measured, producing ̂CIELAB which can

be compared in ∆E2000 to the original CIELAB values. Second,

these set of values provided an independent set on which the RGB

error of the LUT built by an algorithm could be compared across

different parameter settings. Since cross-validation of the param-

eters for each algorithm in terms of the actual CIELAB error is in-

tractable in a realistic workflow, the absolute RGB error was used

as a proxy in order to find an appropriate parameter setting for the

specific device. Table 1 shows the compared parameter settings

and those that were chosen as optimal in terms of absolute RGB

error are shown in Table 2.

Table 2. RGB-error Cross-validated Parameters

λ λg

Brother

Lattice (JK) 1e-5 n/a

Lattice (JL+bias) 1e0 1e-2

Tikhonov 1e2 n/a

HP

Lattice (JK) 1e-5 n/a

Lattice (JL+bias) 1e0 1e-2

Tikhonov 1e1 n/a

Subjective Smoothness Experiments
Starting with the parameters in Table 2, a range centered at

these values was logarithmically swept by two values in each di-

rection in order to compare how the smoothness and accuracy

change with respect to the parameters. As described above, ac-

curacy was measured in the ∆E2000 error between the desired and

measured CIELAB values. Additionally, the smoothness of each

algorithm was assessed by perceptual evaluation of a target con-

sisting of circular ramps on a neutral (L∗ = 50,a∗ = 0,b∗ = 0)
background. Examples of the smoothness target are shown in

Fig. 2, which shows that discontinuities in the color show up

as circular artifacts. We found in previous experiments that such

circular artifacts are generally more noticeable than the banded

artifacts produced by analogous rectangular color ramps. All

of the CIELAB ramps were adjusted to lie within the gamut of

the intended printer and this gamut was estimated by the alpha-

shape [4] (with α = 2000) applied to the measured values from the

TC9.18 chart for that printer. For seven of the ramps, a constant

chroma was fixed at values lying at a constant radius in a∗b∗ (in-

cluding one at a∗ = 0,b∗ = 0) and the L∗ value was swept within

the range of the gamut at this chroma. The remaining two ramps

were the lines (in [L∗,a∗,b∗]) {[100,-100,-100],. . . ,[0,100,100]}
and {[100,-100,100],. . . ,[0,100,-100]} clipped to the gamut and

these provide an example of smoothness in both lightness and hue.

Twenty adults with normal color vision subjectively ranked

the smoothness of the printed targets. Each person ranked fifteen

targets separately for the inkjet and laser printer, with ties not al-

lowed. The lighting was produced by two 4700K Sollux lamps

from Tailored Lighting approximating D50 illumination.

The ranked data was treated as pairwise preference informa-

tion, and Thurstone’s Law (Case V) was applied for analysis [5],

producing a smoothness scale value for each print along with a in-

crement ∆s by which values can be judged significantly different.

LR with JK HP Photosmart D7260 inkjet

LR with JK Brother 4040CDN laser

Figure 2. Figure shows examples of the color-managed prints that sub-

jects ranked to evaluate smoothness. Since the displayed RGB values are

intended to be printed by the respective printers, the actual smoothness and

color is not reproduced accurately but, when treated as SRGB, the images

do effectively illustrate the kind of contours seen in the prints.

Results

In Fig. 3, the performance of each algorithm was evaluated

in both smoothness and median ∆E2000 accuracy over a range of

parameter settings. Here we see similar performance between the

two regularization techniques for lattice regression with no clear

winner between the two. However, we see that lattice regres-

sion outperforms local-linear Tikhonov regression, as the results

for the latter are to the lower-right. Additionally, a comparison

of the median and 95th-percentile ∆E2000 errors and smoothness

in terms of ∆s, the smallest significant smoothness difference, is

shown in Table 3 for the cross-validated parameter settings. Here,

we see comparable errors but increased smoothness for lattice re-

gression (vs. Tikhovnov) for the Brother 4040CDN laser printer.

For the HP Photosmart D7260 inkjet printer, the errors are again

comparable, but lattice regression with the JK regularizer does not

produce a significantly different smoothness than Tikhonov.

18th Color Imaging Conference Final Program and Proceedings 357

Figure 3. Figure shows the psychometrically scaled smoothness obtained

from the ranking experiment plotted against median ∆E2000 error for varying

algorithm parameters. The ”best” algorithms will have values in the upper-left

(high smoothness and low error). The data point indicated by the circle is the

cross-validated algorithm setting. Legend: Red=LR (JK), Blue=LR (JL+bias),

Black=Tikhonov.

Conclusions

In this paper we show that using only the thin-plate regu-

larizer can achieve the same performance as the combination of

two regularizers previously proposed for lattice regression. Fur-

ther, we demonstrated through controlled objective and subjective

experiments that the regularized lattice regression achieves state-

of-the-art performance for color management in terms of accuracy

and smoothness.

Table 3. Cross-validated Algorithm Comparison

∆E∗

2000 Error Smooth-

ness*Median 95%-ile

Brother

Lattice (JL+bias) 1.42 3.48 4.03∆s

Lattice (JK) 1.52 3.92 6.00∆s

Tikhonov 1.62 3.37 0.00∆s

HP

Lattice (JL+bias) 1.31 2.53 2.12∆s

Lattice (JK) 1.19 2.21 0.00∆s

Tikhonov 1.37 2.90 0.44∆s

*Note the smoothness scores should not be compared across

printers, as the scores are based on relative assessments

made for each printer separately.

References
[1] A. Artusi and A. Wilkie, Novel color printer color characterization

model, Journal of Electronic Imaging, vol. 12, no. 3 (2003).

[2] R. Bala, Digital Color Handbook, chapter 5: Device Characterization,

CRC Press, pp. 269–384 (2003).

[3] R. Bala, Iterative technique for refining color correction look-up ta-

bles, U.S. Patent 5649072 (1997).

[4] T. J. Cholewo and S. Love, Gamut boundary determination using

alpha-shapes, Proc. 7th IS&T Color Imaging Conference (1999).

[5] P. Engeldrum, Psychometric Scaling, chapter 8: Indirect Interval

Scaling - Case V and Paired Comparison, Imcotek Press, pp. 93–108

(2000).

[6] E. K. Garcia and M. R. Gupta, Building Accurate and Smooth ICC

Profiles By Lattice Regression, Proc. 17th IS&T Color Imaging Con-

ference pp. 101–106 (2009).

[7] E. K. Garcia and M. R. Gupta, Lattice Regression, Advances in Neu-

ral Information Processing Systems (NIPS) pp. 1–9 (2009).

[8] P.J. Green, B.W. Silverman, Nonparametric Regression and General-

ized Linear Models: A roughness penalty approach, (1994).

[9] M. R. Gupta, E. K. Garcia, and E. M. Chin, Adaptive local linear

regression with application to printer color management, IEEE Trans.

on Image Processing, vol. 17, no. 6, pp. 936–945 (2008).

[10] N. Hrustemovic and M. R. Gupta, Multiresolutional regularization

of local linear regression over adaptive neighborhoods for color man-

agement, Proc. of the Intl. Conf. on Image Processing (2008).

[11] H. R. Kang and P. G. Anderson, Neural network application to the

color scanner and printer calibrations, Journal of Electronic Imaging,

vol. 1, pp. 25–135 (1992).

[12] U. Luxburg, A Tutorial on Spectral Clustering, Statistics and Com-

puting, pp. 395 - 416 (2007).

[13] V. Monga and R. Bala, Algorithms for Color Look-up-table (LUT)

Design via Joint Optimization of Node Locations and Output Values,

ICASSP (2010).

[14] J. Morovic, A. Albarran, J. Arnabat, Y. Richard, and M. Maria,

Accuracy-preserving smoothing of color transformation LUTs, Proc.

16th IS&T Color Imaging Conference pp. 243–246 (2008).

[15] T. Olson, Smooth Ramps: Walking the Straight and Narrow Path

through Color Space, Proc. 7th IS&T Color Imaging Conference, pp.

57–64 (1999).

[16] W. R. Tobler, Lattice Tuning, Geographical Analysis, vol. 11, no. 1,

pp. 36–44 (1979).

358 ©2010 Society for Imaging Science and Technology

