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Abstract: Recently Logvinenko introduced a new object-

color space, establishing a complete color atlas that is invariant to

illumination [2]. However, the existing implementation for calcu-

lating the proposed color descriptors is computationally expensive

and does not work for all types of illuminants. A new algorithm is

presented that allows for an efficient calculation of Logvinenko’s

color descriptors for large data sets and a wide variety of illumi-

nants.

Introduction
In the CIE XYZ space, colors of reflecting objects define

a volume called the object-color solid [7, 2], which depends on

the spectral power distribution of the illuminant. Figure 1 shows

the object color solid for illuminant D65 in the CIE 1931 XYZ

tristimulus space. Recently Logvinenko introduced a new object-

color space, establishing a complete color atlas that is invariant to

illumination [2], containing all colors in the object-color solid un-

der any illuminant. However, Logvinenko’s existing implemen-

tation for calculating the proposed color descriptors is computa-

tionally expensive and does not work for all types of illuminants.

Figure 1: The object-color solid for illuminant D65 in the CIE

1931 XYZ space.

The points on the surface of the object-color solid are called

optimal color stimuli, sometimes described as the object-color

stimuli that for a given chromaticity have the greatest luminous

reflectance [7]. It is generally accepted that they are generated

by reflectance spectra that take values of either zero or one across

the visible wavelength range, with no more than two transitions

between these values, specified by transition wavelengths λ1 and

λ2 [7]. There are two types of optimal reflectance functions, de-

noted xopt (λ ;λ1,λ2). Type I functions take a value of one for

λ1 < λ < λ2, and zero everywhere else, while Type II functions

take a value of zero for λ2 < λ < λ1, and one everywhere else.

Note that we follow Logvinenko’s notation, where λ1 < λ2 for

Type I and λ2 < λ1 for Type II reflectance functions.

It is also possible to describe the optimal reflectance func-

tions using central wavelength, λ , and spectral bandwidth δ , to

define the center and width of the interval described by the tran-

sition wavelengths. The central wavelength λ and spectral band-

width δ can be calculated from the transition wavelengths as

δ = |λ1 −λ2|

λ =
λ1 +λ2

2

for Type I optimal reflectances, and for Type II as

δ = (λmax −λmin)−|λ1 −λ2|

λ =

{

λ1 +
δ
2 if λ1 +

δ
2 < λmax

λ2 −
δ
2 else

In [2] Logvinenko provides more details on the terminology

and the inverse calculation.

While it has been shown that the two-transition assumption

is not strictly true, it provides a very good approximation to the

real object color solid [2], at least for the CIE 1931 2◦ standard

observer, which will be adopted for the rest of this paper. It has

also been shown that, for an everywhere positive illuminant, there

are no metamers among the optimal reflectance functions. This

means that each point on the object-color surface can be uniquely

identified by the transition wavelengths λ1 and λ2. It is also pos-

sible to describe the optimal reflectance functions by a central

wavelength λ and a spectral bandwidth δ (see [2]). These have

the advantage of providing clear perceptual correlates (see Figure

5), but for computational purposes the transitional wavelengths

are more convenient.

Logvinenko represents a color in the interior of the solid as a

linear combination between gray and the optimal reflectance func-

tion xopt (λ ;λ1,λ2) lying on the same radius from gray. Gray is

the achromatic color stimulus generated by the reflectance spec-

trum x0.5(λ ) = 0.5, and lies at the center of the solid. The amount

of gray in a stimulus is described by the purity α , such that the

spectrum x(λ ) = x0.5+α(xopt (λ ;λ1,λ2)−x0.5(λ )) is metameric

to the described color. Figure 2 shows a cross-section of the

object-color solid with the gray center, a color stimulus inside the

solid and the optimal stimulus lying on the same radius.

For any set of color descriptors (α,δ ,λ ), or the equivalent

(α,λ1,λ2), the sensor responses can be directly calculated as
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Figure 2: A cross section of the object-color solid in the Y plane

showing the gray center (G), a color stimulus inside the solid (C)

and the optimal stimulus lying on the same radius (O). The purity

α is the relative position of C the on the line connecting G and O:

α = dist(G,C)
dist(G,O)

.

ϕi(α,δ ,λ ) = ϕi(α,λ1,λ2) (1)

=

ˆ λmax

λmin

((1−α)x0.5(λ )+α(xopt (λ ;λ1,λ2)))

si(λ )I(λ )dλ

where xopt is the optimal reflectance function defined by λ and δ ,

si are the cone sensitivities, and I is the illuminant.

The subject of this paper is, however, the inverse of this

calculation: given a set of sensor responses ψi we want to find

(α,λ1,λ2) such that

ϕi(α,λ1,λ2) = ψi (2)

Since there is no way to invert Equation 1 directly, solving Equa-

tion 2 is not trivial.

The paper is organized as follows. Section describes how to

obtain the αδλ coordinates by combining optimization and inter-

polation; Section presents some results obtained using the new

algorithm; and Section concludes the paper.

Calculation of ADL Coordinates by Optimiza-
tion

Finding the ADL coordinates αδλ (or the equivalent αλ1λ2)

corresponding to a set of sensor responses ~ϕ under a given illu-

mination can be approached as an optimization task. The first

problem is to find a suitable objective function, that is to say an

error measure to be minimized, E(α,λ1,λ2). In agreement with

[2] we use the angular error in the sensor space, with the origin

at gray, as an error measure. This means we have to calculate

the sensor responses ϕi(α,λ1,λ2) of the current αλ1λ2 (Equation

1), subtract the value of gray from both ~ϕ1,λ1,λ2
and ~ϕ , and then

calculate the angle between them as

E(α,λ1,λ2) = arccos
(~ϕ −~ϕ0.5)

T (~ϕ1,λ1,λ2
−~ϕ0.5)

|~ϕ −~ϕ0.5||~ϕ1,λ1,λ2
−~ϕ0.5|

(3)

We move the origin to the interior of the solid by subtracting ~ϕ0.5,

the sensor response of a 50% reflector, in order to obtain non-zero

vectors for all colors on the color-solid boundary.

While it is possible to directly minimize E, this is compu-

tationally expensive. In [2] it took several days [3] to calculate

the ADL coordinates for the set of 1600 glossy Munsell chips

(reflectance spectra available at [4]), which makes this method

impractical for larger data sets such as spectral images. In order

to reduce the time needed for optimization, it is essential to find

starting values close enough to the solution. One possible way to

find these is to calculate sensor responses for a regular sampling of

the ADL space, and then use interpolation to approximate the in-

verse transformation. However, we have found that interpolation

over the whole range of possible αλ1λ2 values is computation-

ally expensive. It is thus desirable to restrict the search space, or

ideally to reduce its dimensionality.

Obviously the angular error does not depend on the purity

α , which correlates to the distance of the stimulus to the origin at

gray. This allows us to reduce the search space from three to two

dimensions by only considering colors on the color-solid bound-

ary, where α = 1. The reduced complexity (computation time

reduced from days to minutes) makes it practical to use interpola-

tion to find good starting values for λ1 and λ2. Section describes

the interpolation process.

Once reasonable starting values have been found, λ1 and λ2

can then be obtained as the values minimizing Equation 3 with

α = 1, giving

(λ1,λ2) = argminλ1,λ2
E(1,λ1,λ2) (4)

. Section explains a way to calculate the sensor responses in an

efficient manner, allowing for fast optimization. We have used

an optimization function for Matlab available on line [5]. In

some cases the process does not converge. This can happen, for

example, when the illumination spectrum contains sharp peaks.

Randomly varying the starting values for the optimization usually

solves these problems.

When λ1 and λ2 have been found, the purity α can be cal-

culated directly as the relative position of the stimulus on the line

connecting the gray center and the optimal stimulus defined by λ1

and λ2:

α =
|~ϕ1,λ1,λ2

−~ϕ0.5|

|~ϕ −~ϕ0.5|
(5)

In practice, interpolation often yields sufficiently precise re-

sults. Optimization is only required in cases where the angular

error of the interpolation result is not acceptable. Finally, δ and

λ can then be calculated from λ1 and λ2. Together, the result-

ing αδλ describe a spectrum that is metameric to the stimulus ~ϕ
under the given viewing conditions.

Finding starting points by interpolation
Since we consider only colors on the object-color-solid

boundary, and the color-solid is a convex volume, we can convert

the sensor responses on the boundary into spherical coordinates,

discarding the radius and keeping only the spherical angles Θ and

φ . Firstly, we need to move the origin to the gray center of the

color-solid in order to obtain well-defined angles for all points on

the boundary, giving

~ϕ ′ = ~ϕ −~ϕ0.5 (6)
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Figure 3: Distribution of Type I/Type II spectra in spherical co-

ordinates. A regular sampling of the wavelength domain in 4nm

steps was used to generate λ1 and λ2 values defining the optimal

reflectance functions. Illuminant D65 and the CIE 1931 2◦ ob-

server were used to calculate the sensor responses before convert-

ing to spherical coordinates. The black line indicates the bound-

ary between Type I and Type II.

. The spherical angles are calculated as

Θ = arccos
ϕ ′

3

|~ϕ ′|
(7)

φ = atan2(ϕ ′
2,ϕ

′
1) (8)

We are now looking for a function F : (Θ,φ)→ (δ ,λ ), which

approximates the inverse of Equation 1. Specifically we would

like to find λ1 and λ2 defining the optimal reflectance function

whose sensor responses are on the radius from gray as ~ϕ , which

means that the spherical angles Θ and φ should be identical. Since

there are no metamers on the color-solid boundary, there is a one-

to-one correspondence between (Θ,φ) and (λ1,λ2).
At the boundary between Type I and Type II we observe dis-

continuities in δ and λ (see Figure 4), which can cause problems

in the interpolation by generating intermediate values while ac-

tually there should be a step. This can be avoided by attempting

interpolation for Type I and Type II separately. Figure 3 shows the

distribution of Type I and Type II optimal reflectance functions in

the spherical coordinate system. The space is evenly divided be-

tween the two types, however there is no simple way to determine

the type of an arbitrary point in this representation.

Since Type I and Type II reflectances are symmetric with

respect to gray, instead of creating separate interpolation func-

tions we can simply calculate the corresponding stimulus value

ϕII complementary to ~ϕ as

~ϕII = ~ϕ0.5 − (~ϕ − ~ϕ0.5) (9)

Both
~

ϕII and ~ϕ can then be converted to spherical coordi-

nates, and we attempt interpolation to find using only Type I re-

flectances, resulting in 2 possible values for the transition wave-

lengths, (λ I
1 ,λ I

2 ) and (λ II
1 ,λ II

2 ) . If the result is better for ~ϕc, that is

to say the angular error in Equation 4 is smaller for (λ II
1 ,λ II

2 ) than

for (λ I
1 ,λ I

2 ), we are dealing with a Type II reflectance and need to

switch λ II
1 and λ II

2 :

(λ1,λ2) =

{

(λ I
1 ,λ

I
2 ) when E(λ I

1 ,λ
I
2 )≤ E(λ II

1 ,λ II
2 )

(λ II
2 ,λ II

1 ) else
(10)
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Figure 4: The transition wavelengths λ1 (4a) and λ2 (4b) for

the points in Figure 3. Black represents the lowest possible value

(380nm ), and white the highest possible value (780nm). Note

that a change from Type I to Type II occurs when we go from

λ1 ≤ λ2to λ1 > λ2, which also happens when one of the wave-

lengths exceeds the minimum or maximum (black and white in

the image).
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For interpolation we have used a linear triangulation based

method, available in Matlab as TriScatteredInt [6], which per-

formed better than natural neighbor interpolation or radial ba-

sis functions (see [1] for a review of scattered data interpolation

methods). The interpolation data is created by generating Type

I spectra, varying λ1 and λ2 in regular steps, and calculating the

sensor responses for all of these spectra. We have found that 1nm

steps provide a good compromise between speed and precision.

The transition wavelengths can then be converted into spectral

bandwidth and central wavelength.

Efficient calculation of sensor responses
The optimization process requires repeated computation of

the sensor responses ~ϕλ1,λ2
for optimal reflectance functions

xopt(λ ;λ1,λ2). The sensor responses have the general form

ϕλ1,λ2
=

ˆ λmax

λmin

xopt(λ ;λ1,λ2)~s(λ )I(λ )dλ (11)

Since the optimal reflectance functions of Type I (where

λ1 ≤ λ2) only take values of one on the interval [λ1,λ2] and are

zero everywhere else, we can rewrite Equation 11 as

~ϕλ1,λ2
=

ˆ λ2

λ1

~s(λ )I(λ )dλ (12)

. We can now use the antiderivative ~ϕ(λ ) of the integrand in

Equation 12 given by

~ϕ(λ ) =

ˆ λ

λmin

~s(λ ′)I(λ ′)dλ ′ (13)

in order to simplify Equation 12 to

~ϕλ1,λ2
= ~ϕ(λ2)−~ϕ(λ1) (14)

The antiderivative ~ϕ does not depend on the optimal re-

flectance function. We have precomputed ~ϕ at 0.1nm steps and

interpolated it using splines, so the calculation of sensor responses

for an optimal reflectance function now only requires evaluating

the spline function at the points λ1 and λ2, which is significantly

faster than numerical integration.

For Type II optimal reflectance functions (where λ1 > λ2) we

can calculate the sensor response by exploiting the fact that each

Type II spectrum has a complementary Type I spectrum. By defi-

nition (see Section 1) the complementary spectra add up to white,

and we can calculate the sensor response for a Type 2 reflectance

function as the difference between white and the complementary

Type I responses:

~ϕλ1,λ2
= ~ϕ(λmax)− (~ϕ(λ1)−~ϕ(λ2)) (15)

Combining Equations 14 and 15 we obtain the following ex-

pression for calculating the sensor response of any two-transition

optimal reflectance function

(a) Scene under D65 (b) Purity α

(c) Bandwidth δ (d) Central wavelength λ

Figure 5: The αδλ color descriptors calculated for a scene un-

der D65. The original XYZ were calculated from the spectral

reflectance image based on the CIE 1931 2◦ standard observer.

The maximum angular error threshold (see Equation 3) was set to

0.05◦.

~ϕλ1,λ2
=

{

~ϕ(λ2)−~ϕ(λ1) when λ1 ≤ λ2

~ϕ(λmax)− (~ϕ(λ1)−~ϕ(λ2)) when λ1 > λ2

(16)

This allows for efficient computation of ~ϕλ1,λ2
and signifi-

cantly speeds up optimization.

Since integration is a linear operation, Equation 16 can also

be used to calculate the sensor responses for non-optimal coordi-

nates αδλ , changing Equation 1 to

~ϕα ,δ ,λ = ~ϕ0.5 +α(~ϕλ1 ,λ2
−~ϕ0.5) (17)

which only requires the calculation of sensor responses for opti-

mal reflectance functions.

Results/Discussion
The proposed algorithm is significantly faster than the previ-

ous implementation [3]. For the set of 1600 glossy Munsell sam-

ples used in [2], with a maximum angular error (see Equation 3)

of 0.001◦, the calculation now takes roughly 90 seconds instead

of several days (Matlab version 2009b running on a Power Mac

G5).

Depending on the required precision and the size of the data

set, a compromise has to be found between interpolation versus

optimization. For large data sets, high-resolution interpolation

will yield sufficiently accurate results for many colors, but the

creation of the interpolation functions by triangulation quickly be-

comes too time consuming. For small data sets, it may be faster to

use only a low-resolution interpolation and rely on optimization

to find the correct αδλ descriptors. For repeated calculations in-

volving the same illuminant and observer, the interpolation func-

tions need to be calculated only once, and can be stored for reuse.

Figure 5 shows the calculated color descriptors for a scene

under D65 (spectral image retrieved from the Joensuu spectral
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(a) Bandwidth δ̃ (b) Central wavelength λ̃

Figure 6: The reparametrized bandwidth and central wavelength

for the scene in Figure 5.

database [4]). We can observe the perceptual correlates of the de-

scriptors as described by Logvinenko. Central wavelength (Figure

5d) is correlated to hue. The spectral bandwidth (Figure 5d) corre-

lates with blackness and whiteness, but becomes meaningless for

low purities (gray colors). Purity (Figure 5b) describes the gray-

ness of a color, namely, the relative distance to the gray center (see

Equation 1). For example, black and white have a high purity, as

can be seen in the dark background regions of the image.

The results highly depend on the selected wavelength in-

terval, and it would be useful to normalize the values to a

standard range. For this purpose Logvinenko has introduced a

reparametrization of the wavelength interval (see [2]), taking into

account the magnitude of the sensor responses. For example, the

sensor sensitivities at long (> 700nm) and short (< 400nm) wave-

lengths are very low, and reparametrization compresses these por-

tions of the spectrum. The reparametrized αδλ descriptors are

denoted as αδ̃ λ̃ . The purity α is not concerned by reparametriza-

tion, since it does not affect the wavelength range determined by

the descriptors. Figure 6 shows the reparametrized descriptors

corresponding to the image in Figure 5, the results become less

dependent on the selected wavelength range, and the descriptors

are more consistent across uniform regions of the image.

One of the possible applications of ADL color descriptors

is the prediction of the effect of an illumination change. Since

the colors are now essentially described by a reflectance spec-

trum, we can simply calculate the sensor response (camera RGB

or cone LMS) for any given illuminant according to Equation 1.

Figure 7 shows the result obtained by calculating the RGB sensor

responses for the color descriptors in Figure 5, using CIE illumi-

nant A instead of D65. Errors in the prediction are a result of

the illuminant-induced color-stimulus shift described by Logvi-

nenko [2]. Although the ADL space is invariant to illumination,

the αδλ color descriptors themselves can change with the illu-

mination, since each αδλ triplet describes a class of metamers,

and metamerism depends on the illuminant.

Using the proposed algorithm we also investigate the

illuminant-induced shift in the color descriptors for less smooth

illuminants, including fluorescent ones. Figures 8-10 show the

color stimulus shift for an illumination change from D65 to F11,

which is clearly different from, and larger than, the shift induced

by changing from D65 to A. The significant differences in the il-

luminant spectrum create the larger shifts in spectral bandwidth

(a) Scene under A (b) Prediction from αδλ

(c) Scene under F11 (d) Prediction from αδλ

Figure 7: The prediction of illumination change from D65 to

A and F11. On the left the result calculated from the original

spectral image, and on the right the result obtained by relighting

the color descriptors (calculated from the scene illuminated D65)

with illuminant A and F11.
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Figure 8: The illuminant-induced shifts for the 1600 glossy Mun-

sell chips in purity. The reference illuminant is D65 and test illu-

minants are A (red) and F11 (blue).
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Figure 9: The illuminant-induced shifts for the 1600 glossy Mun-

sell chips in reparametrized spectral bandwidth δ̃ . The significant

differences in the illuminant spectrum create a larger effect for

F11, which is a fluorescent light with narrow peaks in the power

distribution.
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Figure 10: The illuminant-induced shifts for the 1600 glossy

Munsell chips in reparametrized central wavelength λ̃ .

(Figure 10) and central wavelength (Figure 8) for F11, which is

a fluorescent light with narrow peaks in the power distribution.

Purity (Figure 8) seems to be least affected by an illumination

change.

Conclusion
The proposed algorithm provides a significant decrease in

computation time compared to the existing implementation, and

enables the calculation of αδλ color descriptors for a wide range

of illuminants, including fluorescent ones that have previously

proved problematic. It is now feasible to calculate the descrip-

tors for large data sets or images, clearly visualizing the percep-

tual correlates of the αδλ descriptors. This is the first step on the

way towards using Logvinenko’s object-color space as a device-

independent color space in a variety of applications including de-

vice characterization and calibration.
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