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Abstract
In recent years, various color difference formulas were

developed for the CIELAB space, such as CMC, CIE94 and
CIEDE2000. Although these formulas have achieved greater ac-
curacy in perceptual measurement between colors, many applica-
tions cannot take advantage of this greater precision, because the
Euclidean distances in CIELAB are not isometric in accordance
with these new formulas. Thus, applications such as gamut map-
ping and color interpolation need a color space that is isometric
in relation to the latest color difference formulas. This paper stud-
ies the mapping of the CIELAB space, particularly the ab plane
of this space according to the metrics of the CIEDE2000 formula,
through multidimensional scaling (MDS) techniques, more specif-
ically ISOMAP and an optimization based on Sammon Mapping.

Introduction
In recent years, various color difference formulas were de-

veloped for the CIELAB space, such as CMC [1], CIE94 [2] and
CIEDE2000 [3]. Although these formulas have achieved greater
accuracy in perceptual measurement between colors, many appli-
cations cannot take advantage of this greater precision, because
the Euclidean distances in CIELAB are not isometric in accor-
dance with these new formulas. Thus, applications such as gamut
mapping and color interpolation need a color space that is isomet-
ric in relation to the latest color difference formulas.

The creation of colometric spaces that are isometric to the
most recent color difference formulas has been the subject of sev-
eral works. Regarding the CIE94 formula, we note the space
DIN99 [4], which became a standard in Germany, and an im-
provement of this space was proposed by Cui et al. [5]. Isometric
mapping from the CIEDE2000 formula was partially studied by
Völz [6], who investigated only the first quadrant, and through a
more comprehensive approach by Urban et al. [7, 8], who also
produced mappings for the CIE94 and CMC formulas.

This paper studies the isometric mapping of the CIELAB
space, particularly the ab plane of this space according to the
metrics of the CIEDE2000 formula, through multidimensional
scaling (MDS) [9, 10] techniques, more specifically, ISOMAP
[11] and an optimization based on Sammon Mapping [12]. MDS-
based techniques have been employed in color and image science
in many different contexts, such as a three-dimensional represen-
tation of the Munsell color chips spectrum [13], analysis of the
geometry of the Munsell color space [14] and perceptual analysis
of image quality [15]. However, we could not find any studies
on the use of MDS to generate Euclidean metric spaces based on
color difference formulas.

This paper is structured as follows: first we describe more
precisely the problem of mapping a space with a non-Euclidean

metric in a Euclidean metric space. Then, we present our ap-
proach to construct this mapping, describing the mapping of the
lightness coordinate and ab plane. Following, we show the re-
sults obtained, an analysis of the dimensionality of the isometric
mapping of the ab plane and the accuracy of the two- and three-
dimensional mappings achieved in this plane. Finally, we present
our conclusions.

Description of the Problem
In this section we describe mathematically the problem of

creating a mapping that approximates the CIELAB space, under
the non-Euclidean distance metrics of the CIEDE2000 formula,
onto a new Euclidean metric space.

Mathematical Formulation
Let c1 = (L1,a1,b1) and c2 = (L2,a2,b2) be coordinates in

the CIELAB space, where ‖c2− c1‖ ≤ D0, for a small D0. The
Euclidean mapping M2k is defined as:

M2k :R3 → Rd+1

ΔE2k(c1,c2) = ‖M2k(c2)−M2k(c1)‖
(1)

where d is the dimension of an Euclidean perceptual space cor-
respondent to the ab plane, ΔE2k(c1,c2) is the CIEDE2000 color
difference equation and D0 is the largest color difference where
equation 1 can be applied.

In the CIEDE2000 formula (2), component L from the
CIELAB space is independent from variables a and b.

ΔE2k(c1,c2)=
√

ΔEL2k(L1,L2)2+ΔEab2k ((a1,b1),(a2,b2))2 (2)

In the same way as in [8, 7], mapping M2k can be expressed
in terms of mapping ML

2k for the L coordinate and in terms of
mapping Mab

2k for the ab plane.

ML
2k :R→ R

ΔEL2k(L1,L2) = ‖ML
2k(L2)−ML

2k(L1)‖
(3)

Mab
2k :R

2 → Rd

ΔEab2k (c1,c2) = ‖Mab
2k (a2,b2)−Mab

2k (a1,b1)‖
(4)

Thus, we can say that cm =M2k(c), where c= (L,a,b), cm =
(Lm,m1, · · · ,md), Lm =ML

2k(L) and (m1, · · · ,md) =Mab
2k (a,b).
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Approach
Euclidean mapping M2k was generated from the partial map-

pings ML
2k and M

ab
2k , and each of these partial mappings was ob-

tained separately, as described below.

Lightness Mapping
The mapping of the lightness coordinate is determined by

calculating the following integral derived from the CIEDE2000
formula, as described in [8, 7].

ML
2k(L) =

∫ L

0

dt
kLSL(t)

(5)

where SL(t) is defined by the CIEDE2000 formula as:

SL(t) = 1+
0.015(t−50)2
√

20+(t−50)2
(6)

The integral (5) is used for the construction of a look-up table
in the form Li→ML

2k(Li), where Li = 0,Lp, · · · ,100, and Lp is the
desired precision, typically ranging from 0.1 to 1.

Ab Plane Mapping
The CIEDE2000 function presents a complex behavior re-

garding the ab plane. This behavior was described in [7], by ana-
lyzing the Gaussian curvature of the ab plane according to the met-
ric induced from the CIEDE2000 function, which revealed signif-
icant variations in the plane’s curvature. This result motivated us
to study the intrinsic dimensionality of the mapping in question.
As we know in advance that the mapping is not perfectly isomet-
ric, the mapping techniques based on multidimensional scaling
[9] were adequate to analyze the dimensionality and to obtain an
almost isometric mapping of the ab plane based on the metrics
induced by the CIEDE2000 function. Since this function is only
defined for small distances, we focused on techniques designed
for multidimensional scaling in manifolds, which are based only
on local distances, such as ISOMAP [11] and LLE [16].

Aiming to increase the accuracy of the Euclidean mapping
obtained by ISOMAP, an additional optimization stage based on
Sammon Maps was conceived, using a minimization algorithm
based on simplex search [17]. The minimization was applied to
an error function, which is also described ahead.

ISOMAP
ISOMAP is a method that takes as input a graph whose nodes

are a set of points that discretize the space to be mapped and
whose edges are the measurements of the distances between a
point and its neighbors. The output of ISOMAP is a new set of
points, representing the isometric mapping in d dimensions that
most closely approximates the set of input points subject to the
distance measurements provided. In this work, the set of points
was generated from a mesh of triangles that discretizes the ab
plane and the distance measures were naturally obtained from the
CIEDE2000 formula itself.

More specifically, let Xi = (ai,bi) and Xj = (a j,b j), i, j ∈
{1, · · · ,n}, be points in the mesh that discretizes the ab plane. Xi
is a neighbor of Xj if and only if ‖Xj−Xi‖≤D0. We say that j be-
longs to the Ni neighborhood of Xi, if and only if Xi is a neighbor
of Xj.

Graph G= (V,E) is defined as V = {X1, · · · ,Xn}, (i, j) ∈ E,
if and only if Xi is a neighbor of Xj. Function (7) maps the graph
edges onto CIEDE2000 distances in the ab plane:

Fab2k : E→ [0,∞),

(i, j)→ ΔEab2k (Xi,Xj)
(7)

ISOMAP has three processing steps. The first step performs
the generation of graph G, the calculation of function Fab2k for all
edges in the graph in question and the creation of the n× n dis-
tance matrix Dab2k with the following initial values:

Dab2k(i, j) =

{

ΔFab2k (i, j) if ‖Xj−Xi‖ ≤ D0,

∞ if ‖Xj−Xi‖> D0
(8)

In the following step, the elements of the Dab2k matrix that
were initialized with ∞, are updated by an algorithm that calcu-
lates the shortest distances among all nodes in the graph, such as
the Johnson’s [18] or Floyd-Warshall’s [19, 20] algorithm.

The final step of ISOMAP is the application of classical mul-
tidimensional scaling algorithm in the matrixDab2k . Classical MDS
performs a linear mapping that preserves the distance relation-
ships present in this matrix, using a projection known as class-
ing scaling [21, 10, 9]. The result of classical MDS is a matrix
Y ∈Rn×d , d < n, where theY columns are the resulting Euclidean
mapping of the Xi points.

To determine Y , classical MDS explores the relationships
between distances and inner product. The Gram matrix G corre-
sponding to the Euclidean space is defined by:

G=YYT (9)

According to classical MDS, matrix G can also be expressed
in terms of distance matrix Dab2k , as follows:

G=−1
2
J(Dab2k)

�2J (10)

J = In×n− 1
n
1n×n (11)

where �2 is the element-wise square operation, In×n is the n× n
identity matrix and 1n×n is the n×n matrix of value 1 elements .

Matrix G is created from equation (10) and the Y values are
obtained by the eigendecomposition of G, as follows:

G=QΛQT (12)

where Λ is a diagonal matrix formed with the G eigenvalues and
Q is an orthogonal matrix with the eigenvectors. To obtain a d-
dimensional Euclidean space, the corresponding Y values are:

Y = QdΛ0.5
d ,d ≤ n (13)

where Qd is a matrix with the d leading eigenvectors, correspond-
ing to the k largest eigenvalues, and Λ0.5

d ∈ Rn×d contains the
square roots of the corresponding eigenvalues. Thus, the Eu-
clidean mapping of point Xi is point Yi, which is the i column
of matrix Y .
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Optimization
Aiming to improve the accuracy of the mapping obtained by

ISOMAP, an additional stage of optimization for the results was
developed. The objective of this optimization is similar to that
of the non-linear projection technique known as Sammon Map-
ping, but employing an error function empirically developed in
this work. The error function (14) is based on the traditional rel-
ative error formula, calculated for every mesh point in relation to
its neighborhood.

Er(i, j) =
|‖Yj−Yi‖−ΔEab2k (Xi,Xj)|

ΔEab2k (Xi,Xj)
, j ∈ Ni (14)

In our understanding, the optimization step must seek to im-
prove both the average error and the maximum error of mapping.
Consequently, the function to be minimized was constructed in
terms of the average and maximum relative error of each grid
point in relation to its neighborhood.

The average error is weighted by Gaussian weightWi j (15),
which decreases as the neighbors move away from point i. The
weighting is designed to increase the importance of the points near
point i, which are usually less numerous than the points near the
edge of the Ni neighborhood in a regular mesh.

Wi j = e−β‖Xj−Xi‖2 (15)

Thus, the weighted average error for point i is defined by:

Emean(i) =
∑
j∈Ni

Wi jEr(i, j)

∑
j∈Ni

Wi j
(16)

Likewise, the maximum error for point i is defined by:

Emax(i) = argmax
j∈Ni

Er(i, j) (17)

Finally, the final error function is a linear combination of the
weighted average error and maximum error:

Eopt(i) = αEmean(i)+(1−α)Emax(i),α ∈ [0,1] (18)

The projection techniques based on Sammon Mapping sup-
port various minimization algorithms [9]. The minimization al-
gorithm chosen was the simplex search developed by Nelder and
Mead [17], because it is available in mathematical programming
packages, such as MATLAB [22], and also because it does not
require the calculation of partial derivatives.

In this study, the algorithm searches small displacements
Δm1, · · · ,Δmd for each point Yi = (mi1, · · · ,mid) in order to mini-
mize the error Eopt(i), according to the pseudo-code below:

errglobal = ∑ni=1Eopt(i) ;
repeat
errglobalold = errglobal ;
for i= 1 to n do
Find Δmi1, · · · ,Δmid ,whereargminYi+Δmi1,··· ,Δmid Eopt(i)
Yi =Yi+Δmi1, · · · ,Δmid ;

end for
errglobal = ∑ni=1Eopt(i) ;

until errglobalold ≤ errglobal

Results
The results illustrate the two key points of this work. The

first is the dimensionality analysis of the mapping of the ab plane
in multidimensional spaces whose Euclidean distances approxi-
mate the CIEDE2000 formula in relation to this plane. The second
focus is the mapping itself, in which Euclidean spaces with two
and three dimensions are obtained from the same formula in the
ab plane with high precision. These results are available online at
www.tecgraf.puc-rio.br/~color.

Dimensionality Analysis
The dimensionality analysis of the Euclidean mapping of ab

plane based on the CIEDE2000 formula was performed based on
the eigenvalues resulting from the multidimensional scaling step
of ISOMAP in a triangle mesh with an hexagon shape. This mesh
was constructed adaptively by successively refining an initial
mesh with six equilateral triangles whose edge sizes was 150, cen-
tered at the origin. The adaptive algorithm [23, 24] successively
refined the mesh by dividing each triangle when the CIEDE2000
difference between the two vertices from an edge was greater
than an established threshold. The final refined mesh has 16,220
vertices, 31,991 triangles with all the edges corresponding to a
CIEDE2000 difference that is less or equal to 1.1.

Figure 1: Cumulative variance by dimension
Figure 1 shows the cumulative percentage variance of the di-

mensions. This figure clearly shows that there are two dominant
dimensions, confirming the predominant bi-dimensional nature of
the mapping. We also note that the relative contributions of other
dimensions are more uniform. The presence of this greater unifor-
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(a) Simplified mesh to illustrate the mapping (b) Simplified mesh mapped

Figure 2: Two-dimensional mapping of a simplified version of the mesh

(a) Superior view (b) Lateral view

Figure 3: Three-dimensional Euclidean mapping of the ab plane
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(a) Unity ellipses plotted in the ab plane (b) Mapping into the new Euclidean space

Figure 4: Two-dimensional Euclidean mapping of unity ellipses

mity of the eigenvalues after the second dimension has motivated
us to examine the accuracy of the mapping in two and three di-
mensions.

Mapping in Two and Three Dimensions
Accurate Euclidean mappings in two dimensions of the ab

plane according to the CIEDE2000 formula are an important prac-
tical result, since these spaces can be used in various applications
such as gamut mapping and color interpolation. Our discrete ap-
proach, however, produces results only at the nodes of the support-
ing triangular mesh. Interpolation techniques can be used for for-
ward and reverse mappings to obtain values throughout the mesh.
In our results, we used the CGAL [25] library to enforce C1 con-
tinuity.

Although the Euclidean spaces in three dimensions may also
be used in the same applications as spaces of two dimensions, in
this work, they were generated with the main purpose of under-
standing the contribution of additional dimensions to the accuracy
of the mapping as well as to obtain insights on the complexity of
the interpolation to/from the ab plane and spaces with more than
two dimensions.

The same mesh used in the dimensionality analysis was used
to obtain Euclidean mappings in two and three dimensions. For
clarity, Figure 2 only presents a simplified version of the original
mesh. To illustrate the three-dimensional mapping, two different
views of the three-dimensional mesh are shown in Figure 3. The
performance of the two-dimensional mapping is also illustrated in
Figure 4, where unity color difference ellipses are mapped from
the ab plane to the new Euclidean space.

The relative error using Formula (14) was calculated for two
million pairs of points randomly generated in the ab plane, where
the Euclidean distance between each pair of points was less than
5. The relative error of this set of points was calculated for two

and three dimensions with interpolations based on the CGAL li-
brary for the 16,220-point mesh. For comparison, we applied the
same interpolation and set of testing points to the mapping data by
Urban et al. [7] obtained online at [26]. The mean and maximum
errors for these mappings are shown in Table 1.

Mesh Dim. Mean Error Max. Error
Mesh 16,220 2 3.98% 26.5%
Mesh 16,220 3 0.88% 49.5%
Urban et al. 2 4.96% 154.0%

Table 1: Mean and maximum errors for different mappings

Conclusions
We studied the mapping of the CIELAB space, particularly

the ab plane, according to the metrics defined by the CIEDE2000
formula, focusing on multidimensional scaling techniques. We
performed a dimensionality analysis of the Euclidean mapping of
the ab plane and investigated the mappings of this plane in two
and three dimensions.

The dimensional analysis revealed that, although the map-
ping of the ab plane according to the metrics of the CIEDE2000
function is essentially a two-dimensional space, the first two di-
mensions capture only about 89% of the variance. To capture
95%, for instance, about eight dimensions would be necessary.
This result, in our opinion, may be another evidence of the in-
herent complexity of the human perception of colors and could
become an input for the creation of more accurate formulas, in
line with the significant academic interest on this subject.

Regarding the two-dimensional mapping, our approach had
achieved better accuracy than the work by Urban et al. [7] in terms
of average and maximum errors. In the three-dimensional map-
ping, the accuracy improvement in the mean error was signifi-
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cant, but we believe that there is a limited number of applications
requiring such precision.

We found that Euclidean mappings according to metrics
of the CIEDE2000 formula between the ab plane and three-
dimensional Euclidean spaces result in some isolated areas where
the third dimension is not a function of the first two dimensions.
The presence of these regions makes the inverse mapping from
three-dimensional space to the ab plane a nontrivial task, which
is only worthwhile if the gains in precision are relevant in face
of the precision requirements of the application. We plan to bet-
ter understand the precision requirements in a future research, by
studying the Euclidean mapping obtained directly from the psy-
chophysics data used in the construction of the CIEDE2000 for-
mula, as suggested by one of our reviewers.

As the regions that hinder inverse mapping are small, another
future work is the creation of an optimization function with a re-
striction ensuring that the third dimension is always a function
of the first two dimensions. This optimization has the potential
to achieve an accuracy level similar to the one obtained with the
three-dimensional mapping presented herein, but without impos-
ing difficulties to the inverse mapping of the ab plane.

Finally, we believe that the generation of a 3D surface
that is isometric to the ab plane according to the metrics of the
CIEDE2000 formula was another significant contribution of this
work. The simple three-dimensional visualization of the original
surface shows sharp bends and a rugged relief that will be use-
ful for future analyses of this color difference formula or for the
generation of new, improved formulas.

Acknowledgments
This work was partially funded by the CNPq and had the sup-

port of Tecgraf/PUC-Rio. Tecgraf is mainly funded by PETRO-
BRAS.

References
[1] Committee of the Society of Dyers and Colorists. BS 6923:

Method for calculation of small color differences. Technical
Report BS 6923, British Standards Institution, 1988.

[2] CIE. Industrial color-difference evaluation. Technical Re-
port CIE Publication No. 116, Bureau Central de la CIE,
1995.

[3] M R Luo, G Cui, and B Rigg. The development of the
CIE 2000 colour-difference formula: CIEDE2000. Color
Research & Application, 24(5):340--350, 2001.

[4] DIN. Farbmetrische bestimmung von farbabständen bei
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