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Abstract
The CIE 1976 L*a*b* Color Space, CIELAB, has been widely and 

successfully used in a variety of applications including digital 

color imaging, color image quality, and color management. One of 

its shortcomings, lack of hue linearity, is a critical problem in 

color gamut mapping and has been addressed by the IPT color 

space which  is  widely used in this  domain. One limitation with 

both  of these spaces is their applicability to color problems in 

high-dynamic-range (HDR) imaging. This is caused by their hard 

intercepts at zero luminance/lightness and by their uncertain 

applicability for colors brighter than diffuse white. To address 

these HDR questions, two newly formulated color spaces are 

proposed for further testing and refinement, hdr-CIELAB and hdr-

IPT. They are simply based on replacing the power-function 

nonlinearities in CIELAB and IPT with  a more physiologically 

plausible hyperbolic function, known as the Michaelis-Menten 

equation, optimized to most  closely simulate the original color 

space for the diffuse reflecting color domain. The formulation of 

these proposed models is described along with some preliminary 

evaluations using  Munsell  data  in  comparison with CIELAB, IPT, 

and CIECAM02.

Introduction
The development, implementation, and testing of color imaging 

systems is intimately tied to the color science tools available, 

namely the colorimetric and color appearance spaces that are 

adopted for use.[1] W. David Wright, one of the fathers of 

colorimetry, is famously quoted as saying  that the development of 

color television was so closely tied to the CIE system of 

colorimetry that if it hadn’t already existed, it would have had to 

be invented to allow for the invention  of color TV.[2] However, 

sometimes, color spaces can limit the performance of color 

imaging systems such as when nonlinear lines of constant 

perceived hue produce unacceptable results in color gamut 

mapping,[3] or poor chromatic adaptation models preclude the 

transformation of color image information from one medium to 

another,[4] or when observer metamerism creates discrepancies 

between colorimetric predictions and observed colors.[5]

Another such difficulty arises when working with high-dynamic-

range imaging systems. This is the fact that color spaces such as 

CIELAB were inherently derived for applications with reflecting 

colored objects under a single uniform illumination.[6] This, by 

definition is a low-dynamic-range environment limited to 

reflectances ranging from glossy black to diffuse white. The 

CIELAB space was not derived for, and has  not  been tested for, 

HDR stimuli that  range in luminance/lightness  from many orders 

of magnitude below diffuse white to many orders-of-magnitude 

above diffuse white. This limitation has been troublesome in, for 

example, the colorimetric calibration and characterization of HDR 

display systems.[7] How does one meaningfully describe the color 

difference of two stimuli with luminance levels  relative to diffuse 

white of 0.0001 or 10,000?

Similarly, the IPT color space was derived to solve one of these 

problems. IPT was formulated to predict constant hue angle for 

stimuli of constant perceived hue significantly better than 

CIELAB.[8.9] This is very useful for gamut mapping algorithms 

that aim to preserve perceived hue while increasing or decreasing 

perceived chroma or lightness to remove violations of gamut 

boundaries.[10]

Useful and reliable color spaces will become more important in the 

development, implementation, and commercialization of HDR 

imaging systems (capture, processing, and display) in the coming 

years. Recent  developments have shown the near-term viability of 

capture systems,[11] processing architectures,[12] and displays.

[13] Commercial systems in all  three domains are becoming 

readily available.

This paper proposes two modified color spaces, hdr-CIELAB and 

hdr-IPT, to begin to address some of the problems of HDR 

colorimetry. They are not intended as final solutions, but rather 

proposals that address HDR problems and provide starting points 

for further collection of visual data, refinement, testing and 

application. The basic structure of these spaces is to  replace power-

function-based  compressive nonlinearities with sigmoidal 

functions (having a threshold toe and saturating shoulder like the 

characteristic tone reproduction curves of imaging systems) that 

are both more physiologically plausible and well-behaved at 

extreme high and low relative luminance levels. The well-known 

Michaelis-Menten equations are adopted  and optimized for this 

purpose.[14] Such application of this functional  form has already 

been successfully demonstrated  in a modified form of the 

CIECAM02 color appearance model.[15,16] The initial derivation 

of hdr-CIELAB and hdr-IPT is given in the following sections 

along with  some testing using Munsell colors and some 

preliminary data on lightness scaling above diffuse white.

Derivation and Formulation of hdr-CIELAB
The derivation of hdr-CIELAB is very straightforward. The 

CIELAB L* equation was  replaced with a Michaelis-Menton 

equation with the following constraints. The semi-saturation 

constant was set to 0.184, which represents  the relative luminance 

of a stimulus with and L* of 50. That  becomes the one point where 

the two systems match perfectly and also makes physiological 

sense of putting the assumed mid-gray background as the point 

where stimulus contrast changes from decremental to incremental. 
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Second an offset of 0.02 was specified under the assumption that 

about 2% of diffuse white represents a reasonable level of visual 

noise for complex stimuli. This leaves only the exponent in  the 

Michealis-Menten equation to be optimized. It was optimized to 

minimize the difference between the Michealis-Menten 

formulation and CIELAB L* for the L* range from 0 to 100 in 

relative luminance steps of 0.01. The resulting exponent was 1.50. 

The sum of errors in L* for the fit was -3.9 and the RMS error was 

5.8. Figure 1 illustrates the L* function and fitted Michealis-

Menten function, Eq. 1, as a function of relative luminance from 0 

to 1.5.

  (1)

Figure 1. CIELAB L* and fitted Michaelis-Menten functions of relative 

luminance in the range from 0-1.5.

For imaging applications it is sometimes necessary to  adjust the 

compressive nonlinearity to account  for changes in surround 

relative luminance (Bartleson-Breneman) or absolute luminance 

level (Stevens Effect).[1] This is accomplished by modifying the 

exponent in the Michealis-Menten function, ε, using factors to 

account for surround, sf, and luminance level, lf, as shown in Eqs. 

3-5. Ys is  the relative luminance of the surround and Yabs is the 

absolute luminance of the scene diffuse white in cd/m2.

  (2)

  (3)

  (4)

The formulation of the full hdr-CIELAB space is then given by 

Eqs. 5-9 by simply replacing the CIELAB cube-root-based 

function with Eq. 1  and adjusting the normalization of the chroma 

dimensions by a factor of 1/100 to  account for the scaling to 100 in 

Eq. 1.
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  (9)

Derivation and Formulation of hdr-IPT

The derivation of hdr-IPT followed the same procedure. The IPT 

exponential nonlinearity (power function with exponent 0.43) was 

replaced with a Michaelis-Menton equation with the same 

constraints. The exponent in the Michealis-Menten equation was 

optimized to minimize the difference between the Michealis-

Menten formulation and IPT I dimension for the I range from 0 to 

1 in relative luminance steps of 0.01. The resulting exponent was 

1.38. The sum of errors  in I for the fit was -0.011 and the RMS 

error was 0.061. Figure 2  illustrates the I function  and  fitted 

Michealis-Menten function, Eq. 10, as a function of relative 

luminance from 0 to 1.5.

  (10)

Figure 2. IPT I and fitted Michaelis-Menten functions of relative luminance in 

the range from 0-1.5.

The exponent  in  the Michealis-Menten function, ε, is again 

modified using factors to account for surround, sf, and luminance 

level, lf, as shown in Eqs. 11-13.

  (11)

  (12)
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  (13)

The formulation of the full hdr-IPT space is then  given by Eqs. 

14-20 by simply replacing the IPT 0.43 power function with Eq. 9.

  (14)

 

  (15)

 

  (16)

 

  (17)

  (18)

  (19)

  (20)

Appearance Predictions of Munsell Colors
Wyble and Fairchild[17] published an analysis of various color 

appearance models using the Munsell Renotation data[18] in 2000. 

That analysis  included the CIELAB, IPT and CIECAM97s models 

and used only those samples found in the gamut of the 1929 

Munsell Book of Color. In the current analysis, similar 

computations were completed and visualized below. However, this 

analysis used the full set of real Munsell data points to provide a 

wider color gamut and included CIECAM02 and the two new 

spaces derived in this paper in addition to CIELAB and IPT.

Lightness
Figure 3 shows the lightness predictors of the five models as  a 

function of Munsell Value. Perfect  prediction of Munsell Value 

would be represented by a straight line with unity slope as seen for 

the CIELAB model and very  closely for the IPT model. 

CIECAM02 shows a slight nonlinearity of prediction and the two 

new HDR spaces exhibit their sigmoidal lightness scale behavior. 

This allows them to extend for a much wider range of relative 

luminance and provide a form that is  consistent with the crispening 

effect[19] that was deliberately left  out of the Munsell Renotation.

[18]

Figure 3. Model lightness predictors as a function of Munsell Value.

Figure 4. Model chroma predictors as a function of Munsell Chroma. 

Chroma
Figure 4 shows the chroma predictors of the five models as a 

function of Munsell Chroma. Data points are color coded to their 

Munsell designations. Perfect prediction of Munsell Chroma would 

be represented by  a straight  line with unity slope and no scatter. 

One can see the well  known compression of yellow chroma in 

CIELAB in comparison with the blue hues. However, it is also 
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clear that  the CIELAB space most consistently predicts the 

Munsell Chroma data. IPT also has fairly linear predictions, but the 

spread from hue to hue is more significant. CIECAM02 also has 

similarly large spread on top of some nonlinear behavior. The two 

hdr spaces show very large spread in the chroma predictions that 

will  require further explanation and potential refinement of the 

models. It is likely  that  some flexibility in the semi-saturation 

constant (and therefore the scale range of the nonlinearities) will  be 

required to create hdr spaces that more closely approximate the 

original CIELAB and IPT spaces.

Hue Linearity
Fig. 5 shows the five model hue predictors as a function of 

Munsell Hue, again color coded by Munsell  designation. Ideal 

results would be a perfect straight line. The well-known kink in the 

blue region of CIELAB is evident along with the relatively good 

behavior of IPT. The HDR versions of CIELAB and IPT show 

similar behavior with respect to hue linearity.

Figure 5. Model hue predictors as a function of Munsell Hue. 

An alternative analysis of hue linearity  is visualized in Fig. 6. In 

this  case principal components analysis was performed on each 

hue slice (projected to the two chromatic dimensions) to determine 

the percent of variation explained by a single characteristic vector. 

A value of 100% would imply perfect hue linearity. Figure 6 

encodes the percent of variation that is not described by the first 

characteristic vector (i.e., the amount of variation requiring a 

second dimension, or curve, to describe). Each model  is 

represented by a row in the figure with the various hues 

represented by columns. Dark areas represent poor hue linearity 

with  values represented by black meaning greater than about 10% 

variance is not described by one dimension. Mid-gray areas 

represent about  3% residual variation and white areas represent 

nearly perfect hue linearity. The rightmost column represents the 
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average values. It  can be seen that  IPT shows its characteristic 

good  hue linearity and hdr-IPT is similar and almost identical on 

average. CIECAM02 and CIELAB illustrate similar performance 

slightly worse than IPT and hdr-CIELAB introduces some 

significant hue nonlinearities due to the sigmoidal  nonlinearities 

that might need attention in a future revision.

Figure 6. Visualization of PCA analysis on the dimensionality of constant hue 

lines. Dark entries indicate that a significant amount of variation requires two 

dimensions to describe (an indication of hue nonlinearity).

Hue Spacing
Hue spacing was evaluated by examining the hue angle distance 

between each neighboring Munsell Hue in each color space. Since 

there are 40 hue samples in the Munsell Renotation, each should be 

separated by 9 degrees  in hue angle for uniform hue spacing. (Note 

it  is possible to  have good spacing with  poor linearity and vice 

versa.) T-tests were performed to test  the hypothesis  that the 

average distance between adjacent hue planes is 9 degrees. A 

p>0.05 indicates that  they hypothesis cannot be rejected. The 

visualization in Fig. 7 renders the p values for each hue and the 

average in the last column. P values of near zero are shown as 

black and indicate poor hue spacing. P values rendered  in white are 

near 1.0 with the mid gray representing p = 0.5. Each space shows 

significant deviation from equal hue spacing with IPT slightly 

worse than the others on average.

Figure 7. Results of t-tests on hue spacing. If each Munsell hue was equally 

spaced from its neighbors for a given model, the row of squares would be 

white. Black areas indicates hues with poor spacing.

Wide-Range Lightness Predictions
Recently experiments  have been completed to scale perceived 

lightness and lightness differences for a range of neutral  stimuli 

with  lightnesses well above that of diffuse white (i.e., with 

L*>100)[20]. These preliminary data were graciously made 

available by to evaluate the hdr-CIELAB and hdr-IPT lightness 

scales in this extended range. The results are shown in Fig. 8 on 

log-log axes. CIELAB L* and IPT I predict the data well for 

lightness greater than diffuse white while hdr-CIELAB Lhdr and 

hdr-IPT Ihdr predict the data better for lightness less than diffuse 

white (all models were normalized to predict a lightness of 100 for 

a relative luminance of 1.0. Since this is just one experiment on 
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scaling wide-range lightness, it  is premature to adjust either model 

to  specifically fit  these data. However the discrepancies well 

illustrate that the models might require some fine tuning of their 

exponents or semi-saturation constants. Alternatively it might be 

the case that adaptation in wide-range lightness scaling needs to  be 

better understood.

Figure 8. Prediction of lightness scaling data in the range from L* = 60 to L* = 
180. Symbols are visual data and lines are model predictions. 95% confidence 
intervals on the experimental data are approximately the same size as the 
plotting symbols and thus obscured by the symbols themselves.

Conclusions
Two new color spaces  were proposed, hdr-CIELAB and hdr-IPT, 

to  allow extension of the CIELAB and IPT color spaces for use in 

HDR imaging applications. Their overall performance in 

predicting Munsell Renotation appearances is similar to the 

traditional versions  of these spaces. However some discrepancies, 

especially in chroma predictions, do show up that warrant further 

investigation. These spaces provide interesting combinations of 

colorimetric fidelity  and physiological plausibility and pose 

interesting new questions for developers of color spaces and 

imaging systems. At this point, these spaces should be considered 

proposals as there is  certainly  a need for more testing, collection of 

more HDR visual data, and refinement of the models. They do, 

however, show great promise for future applications in  color 

specification, device characterization, image difference metrics and 

image quality evaluation.
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