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Abstract

There are now several works reported in the literature which
attempt to estimate surface colour when the same surface is
viewed under two or more lights. There are many practical sit-
uations where such information is available including at shadow
edges or in surveillance applications where the same scene is
viewed over time. Crucially, because typical lights are highly
constrained, they fall on or close to the Planckian locus, vary-
ing illumination algorithms for surface estimation can, plausibly,
estimate surface colour even for scenes with little colour diversity.

One of the first varying illumination algorithms made the
empirical observation that the mappings, 2x2 diagonal matrices,
taking spectral band ratio chromaticities (e.g. r/b and g/b) for sur-
faces viewed under a range of typical lights to corresponding val-
ues under a reference canonical light (e.g. D65) tended to lie on
a 2D line. It follows that applying this ‘linear set’ of maps to the
chromaticity of an arbitrary surface under unknown light results
in a line along which the D65 counterpart should lie. Viewing the
same surface under a second light results in a second constraint
line. The intersection of the two lines results in an estimate of the
surface chromaticity under D65.

‘While this method can work well, Kawakami et al showed
that serious estimation errors can result in the presence of even
small amounts of image noise. While the noise tended to make
only small changes in the slope and intercept of the constraint
lines the intersection point could move a significant distance; in-
deed, the shifted intersection might correspond to a highly im-
probable (physically impossible) light. To solve this ‘intersetion
stability’ problem they proposed limiting the set of maps not only
to lie on a line but on a line segment (e.g. only allow illumi-
nants that are physically plausible and likely). This observation,
which necessitated dealing with the problem non-intersecting line
segments, formed the foundation of a new algorithm which was
shown to deliver a step change in surface colour estimation. In
this paper we extend Kawakami’s work in two ways. First, we
deal with the non-intersecting line problem using a ’total least-
squares’ approach (as oppose to assuming one or other of the line
segments is in error in Kawakami’s work). Second, we optimise
over the position and length of the line segment map-set used.
Experiments demonstrate that our new method delivers signifi-
cantly improved surface colour estimation. Compared with the
Kawakami method we deliver over 50% improved surface colour
estimates. We also show that the Kawakami method can be im-
proved by optimising the line segment map set but even in this
case our new method still provides about a 25% decrease in esti-
mation error.
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Introduction

Colour constancy is the ability to see surfaces independent
of the illumination that is cast on them. Humans have reasonably
good colour constancy (arguably, better than the current best al-
gorithms). For example, a white t-shirt looks white under most
illuminations. Most theories of colour constancy, e.g. [3, 5, 9], at-
tempt to relate an easily derivable summary statistic (mean, max
etc) to the colour of the light. These methods tend to work well
when there is large surface colour diversity in a scene.

An alternate strategy, exploited by Kawakami et al and Fin-
layson et al [2, 6, 7, 8] is to assume that we have access to
the colour of a surface under two or more unknown illuminants.
The key observation exploited in these works is that illumination
colour is limited. To a first approximation typical lights tend to
lie on or near the Planckian Locus which is a curved line in chro-
maticity space. This line effectively provides a constraint for solv-
ing the two light constancy problem.

Consider the case where we are imaging a greenish surface
viewed under two lights. Further, let us suppose the goal of colour
constancy is to map the image colour to its corresponding appear-
ance under a known canonical light. Because we know illumi-
nants lie near the Planckian locus (and or are bluish, whitish and
yellowish), we can solve for the set of maps (diagonal matrices)
that might map a surface colour to its canonical appearance. In [2]
this set could be parametised by a straight line in a 2d mapping
space. This mapping set applied to the camera response resulted
in a linear set (a surface constraint line) of possible chromatic-
ities, any one of which could have been the true surface colour
under the canonical light. In the case where we had a second
light, we ended up with a second set of possible canonical chro-
maticites. Intersecting the two chromaticities resulted in a single
estimate of the surface colour.

The method worked best given two lights which were very
far apart in colour. Indeed, when lights were similar in colour, the
two constraint lines tended to be very similar. And, in this case
small perturbations in the input camera RGBs (e.g. due to noise)
would result in small changes in the lines but, significantly, very
large changes in the intersection of the lines. This intersection
instability was examined in detail by Kawakami et al. [6]. There
they proposed that the instability was in part due to modelling illu-
mination maps by a line of infinite length. This clearly was an un-
necessarily weak assumption. Planckian illuminants are bounded
by temperature (say 2500K to 20000K) and so the Planckian lo-
cus is a curved segement in chromticity space. This implies the
map set taking image colours to canonical counterparts is also
represented as a line segment. Kawakami et al’s *intersecting line
segment’ algorithm delivered a step change in the accuracy of sur-
face colour estimation.

However, the Kawakami approach raised two interesting
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technical questions that, we believe, were only partially ad-
dressed. First, representing the map sets as a line segment can
(and often does) lead to the case where the surface constraint lines
do not intersect. In the Kamakami method this problem is solved
by, effectively, assuming one of the line segments is in error, and
then moving the line to enforce an intersection. We revisited this
problem and propose a method which finds the best intersection
assuming error in both constraint lines. Effectively, our method is
a ‘total least-squares’ solution to the problem. Second, the ques-
tion of ‘what line segment’ is not addressed in Kawakami. In
this paper we find that there is a small benefit in using a slightly
shorter segment than that derived from the endpoints of physi-
cally realisable lines. Not only are these lights ‘unlikely’, the fact
we exclude them means that our estimates of surface colour un-
der highly chromatic (blue or reddish) lights will retain a small
element of the light colour.

Background
Let us assume the RGB response in a camera can be written
as:

pe= [ EQ)SQOR(R)dA M)

Where p denotes e response, E(A) is the illumination function,
S(A) is the surface reflectance and Ry (1) is the spectral sensitivity
of the devices k' sensor. This is integrated across the visible
spectrum . If we assume our device sensor is narrow-band then
we can rewrite equation (1) as the following:

' =S{E; )

Where S] = S/(A)Ri (1) and Ei = E'(A)Ri(A). If we take a sin-
gle surface S]jC and view it under an arbitary illuminant E;{ and a
canonical illuminant £} (where i # c) then (2):
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This equation can be usefully rewritten as:

pjc=2"p" “)

where 2" denotes the 3x3 diagonal matrix mapping responses
under light i to the canonical light c.

Given a camera response [r, g, b] let us define the chromatic-
ity function c as:

(ferea]) = [%%] )

This is a slightly non standard chromaticity space (usually
we divide by the sum of r, g and b). This space is adopted because

if a diagonal matrix relates image colours across illuminants then
this remains true for chromaticities:

¢je=D"cl (©)
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Of course, a 2-d diagonal matrix is parametrised by two num-
bers (the diagonal elements). Thus we can plot maps on a graph.
In previous work, Finlayson et al found, empirically, that the set
of maps taking chromaticities under unknown light to canonical
counterparts tended to lie on a line. That is, the curved line of
Planckian lights was mapped to a straight line using this idea of
’maps to the canonical light’. The set of mappings from unknown
illumination to a known canonical light is represented using the
following equation:

— =m—+k N

where E| and E, denote the chromaticity coordinates of the ith
light E'.

Let us take a chromaticity ¢ of an unknown surface under two
unknown light e = 1 and e = 2. According to our linear model of
illuminant maps (7) we can, after some algebraic manipulation
write down two line equations which define the location of the
chromaticities under the canonical light:

¢ = (m%) (1/E)+ck  e=(1,2) ®)
1

The intersection of these two surface constraint lines is the chro-
maticty under the canonical light.
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Figure 1. Typical daylights plotted in inverse chromaticity space, with best
fit line.

For images where there is no noise problem or for illumant
colours that are far apart, this constraint line intersection approach
delivered good constancy performance. However, Kawakami et al
[6, 7] showed that serious estimation errors can result in the pres-
ence of even modest amounts of image noise. Part of the problem
is that the mapping set of (7) is a line of infinite extent. Physi-
cally this does not make sense. The Planckian locus is bounded
in chromaticity space and so, the corresponding map set should
be bounded. Kawakami et al argued (convincingly) that rather
than modelling the map set as a line, we should model it as a line
segment. The Kawakami algorithm has 2 modes of operation. In
mode 1 the two constraint line segments (bounding the estimate
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colour of the surface under the canonical light) intersect. In this
case the Kawakami algorithm returns the same result as the Fin-
layson et al algorithm. In the second mode, the line segments do
not intersect. Here, based on an argument related to expected sen-
sor noise, one or other of the line segments is assumed to be in
error. Then this segment is moved toward the other segment to
force an intersection. This process is illustrated in Figure 2.

Figure 2. Left: Case of adjusting first line segment Right: Case of adjusting
second line segment. The ratio u does not change in both cases.

Of course the reader might wonder what happens if shifting
the line segment does not, in itself, solve the intersection problem
(e.g. the ranges of the x-coordinates of the segments do not over-
lap). While this problem is acknowledged in the Kawakami work,
no solution is presented.

Improved constraint line intersection

Here we wish to revisit how we find the point which best
approximates the intersection (of non-intersecting line segments).
In Figure 3 we show two non - intersecting line segments. We ask
which point (anywhere on the Cartesian plane) is simultaneously
closest to both segments. Let us denote the line segments as [
and /. Abstractly, we might write our objective function as:

min dist(p,l;) +dist(p, 1)
p

where dist(p,l) is the length between point p and line /.
Clearly, the distance to the line segments is defined by a perpen-
dicular projection. Such projections for the endpoints of each line
to the other line segment are shown in Figure 3. Let us now con-
sider where the actual intersection point might be. Could it be,
for example, between the endpoints for both lines? This is im-
possible. The easy case is shown in Figure 4 where the ranges of
the x coordinates of the line segments do not overlap. Here the
best intersection is the middle of the two closest endpoints. In
the second case we assume the range of the x-coordinates do not
overlap. Here as a function of the x coordinate and barring par-
allel lines the two segments will clearly converge in one direction
(get closer) and diverge in the other. They converge in the left
direction of figure 3. Clearly, as we move an intersection point in
the converging direction the length to both lines (their respective
perpendicular projections) will decrease. Of course we can move
the point only so far until the closest point on either line segment
is the endpoint of one of the lines. Thus, we find the intersec-
tion point by calculating the closest point to each endpoint in the
other line segment. We find the projection point with the mini-
mum distance. The intersection point is simply the average of the
two points. All computation is in closed-form.

One advantage of our intersection problem is that unlike the
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Kawakami method, we always have a well defined intersection
point.

Figure 3. Demonstrates the B line segments defined on the two device
response line segments (shown in red and blue).
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Figure 4. Shows the accepted B line segment with mid point.
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Figure 5. Demonstrates the case where no acceptable perpendicular inter-
sections are found. Therefore the shortest line between endpoints is used.

Of course, the intersection point we calculate will depend on
the line segment used to model the illuminant maps. Indeed, if we
made the segment longer and longer we would eventually observe
the same behaviour as the original Finlayson et al algorithm: as
the segment grows in length the non-intersection problem would
become less frequent. In the opposite direction if we assumed
the illuminant map to be a single map e.g. the identity transform
then the resulting constancy algorithm resorts to averaging the two
input chromaticities (a sort of grey-world approach).

Thus, our second innovation is to consider algorithm perfor-
mance as a function of line segment length. We predict using
a slightly shorter line compared with the physical limits implied
by Planckian illumination will result in improved performance.
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The most saturated lights in our model appear less frequently than
those closer to white. By shortening the line segment represent-
ing the set of light maps we will perform slightly less well for
strongly chromatic light but better on average.

We also predict that adding the length of the line segment
into the mix will also provide a means to improve the Kawakami
algorithm.

Results

In this section we compare the results of our algorithm
against that proposed by Kawakami et al. We conducted two sets
of experiments, one on synthetically generated data, and the other
on a set of real image data. The error measure used is the angular
error between the RGB of the estimated surface colour and the
actual RGB (for a reference light) as it is an error measure inde-
pendent of intensity. Since we do no expect to recover intensity
this is appropriate. Figure 6 shows a visual representation of what
effect varying levels of angular error can have on a colour. This
figure shows that a recovery angular error of 30 degrees would be
the same as suggesting a surface was orange when it was actually
green. An error of up to 5 degrees should give an answer in the
acceptable colour region.

Angular Error (Degrees)

Macbeth Colour Chips

Figure 6. Examples of the effect varying levels of angular error can have.

Synthetic Data Experiments

For our experiments we generated a set of 99 test images
using the 24 chips of the Macbeth Colour checker [10] and 99
recorded daylights [11] and SONY 930-DXC camera sensitivities
[1]. A uniform white light is used as our canonical illuminant.
We also introduced normally distributed random noise with a tol-
erance of 1% SNR into the images. For a single surface colour
the input to all algorithms is a pair of RGBs: the same surface
viewed under a random pair of lights (with noise). Because the
method recovers surface colour chromaticity we make a 3D RGB
vector by mapping [c| ¢3] to [c] ¢z 1]. To measure how well we
have recovered the surface colour (the correct answer defined as
the RGB vector under the canonical illuminant) we calculated the
angle between the recovered estimate and the actual RGB.

We computed all the results of each surface under any pair
the lights. The angular error was calculated between the estimated
surface and the actual surface. The median value was then calcu-
lated for each surface over all the lights. As a comparison we look
at the median recovery error where one of the Macbeth colour
checker responses is randomly selected. Our ‘guessing’ estimate
is calculated by taking each one of the 24 Macbeth chips, and
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working out the median angular error of assuming each one of the
other surfaces as the correct answer. Initially we compared our re-
sult (predicated on the best line segment and our new intersection
method) against the default Kawakami method(figure 7).

I Guessing
80 [ Original
[ Kawakami
I Proposed

Median Angular Error (Degrees)

Macbeth Surfaces

Figure 7. Results using Kawakami default method and our proposed
method, contrasted with the original Finlayson method and ‘guessing’. The
data contains 1% noise.

The reader is no doubt surprised at how poor the original
Finlayson et al method performs. This is in large part due to the
experiment reported here including the cases which Finlayson et
al indicated would result in their algorithm working poory: the
cases where the illuminant change is small. When two illuminants
are close together very small changes in the orientation of the line
e.g. induced by the presences of 1% noise can result in large
changes in the intersection point. It is known that the Finlayson et
al method presented previously only works for illuminants which
are far apart (e.g. sun and shadow) and our results shown in 7 and
8 tell the same story.

In the presence of large amount of noise, it turns out that that
simply guessing the correct surface gives a better result (though
this ranking flips as noise is reduced). Our method shows a sig-
nificant improvement on guessing in every case, and significantly
better than the Kawakami improved algorithm. Also the median
error for most surfaces is less than 5 degrees: our recovery returns
chromaticities that are visually similar.

As a second test, we also optimised the Kawakami method
over all choices of illuminant line segment. Here, performance
improves and is similar to that delivered by our algorithm.
Though, our median angular error remains about 25% lower than
for Kawakami.

I Guessing
80 [ Original  H

[ Kawakami
701 I Proposed

Median Angular Error (Degrees)

Macbeth Surfaces

Figure 8. Results using optimal line segments with 1% noise.
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Real Image Data
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Figure 9. Images from the Microsoft dataset with different illumination. Left:
Indoor Right: Outdoor

To assess our method on real image data we used the Mi-
crosoft Cambridge dataset used in [4]. The 428 images used were
captured using a Canon 1D in RAW format. The Cambridge data
set contains 568 images stored as RAW or rendered jpegs. For
our purposes we wish to have linear camera responses and so
considered only the linear images. Each image contains a Mac-
beth colour checker and so, after extracting this, we can rerun
our previous experiment. However, only 428 of the RAW images
supplied have a checker that is sufficiently large to be extractable
from the image. So, our test will use these images. Taking all
pairs of checkers we have ‘428 choose 2’ = ‘illuminant pairs to
test’ In the synthetic test, D65 was chosen as the reference il-
luminant. Here we choose an arbitrary image from the test set.
Now we extract the 24 RGBs from the checker. The correspond-
ing chromaticities for these responses are, for the purposes of this
experiment, the correct answer.

In a preprocessing step we calculate the 2D diagonal map
taking the remaining 427 colour checker’s to the reference coun-
terpart in a least squares sense. We then optimise for the best line
segment that represents this set of maps.

‘We now randomly select a pair of images (for two unknown
lights) and extract the two colour checkers (shown in Figure 9).
For each surface in the checker we have two chromaticities. One
for each light. We map each by the line segment of illuminant
maps. This results in two sets of possible locations where the
surface chromaticity should lie for the canonical light. The best
intersection of the two segments is our estimate of the surface
colour.

The angular error was calculated between the the RGB value
of the chips in the image and the estimated values from the algo-
rithm. The median was taken for each chip of the Macbeth Colour
Checker. The results are shown in Figure 10. A distinct improve-
ment in our method over Kawakami’s is displayed in real image
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Figure 10. Comparison of results between Kawakami and Proposed

method on real images.

The median of the medians is 3.64 (i.e. less than 5). This is
remarkable. Given real data (and synthetic data) assuming we can
identify the same surface under two lights (e.g. at a shadow edge
or over time in a surveillance situation), we can with tolerable
accuracy estimate the surface colour.

Conclusions

We have proposed a method which extends previous work
to stabilize surface estimation under varying illumination. We de-
veloped a method that is robust and able to produce a well defined
solution. Our experimental evaluation delivers favourable results
when compared against antecedent algorithms.
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