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Abstract
Spatial image processing, such as Retinex, ACE, spatial-

frequency, or bilateral, filtering, use the entire image in rendering 

scenes. These algorithms process captured scene radiances  as 

input; then use the spatial  information to synthesize a new image 

for rendition to a display or print. Spatial algorithms have different 

properties from pixel-processing algorithms. Pixel processes apply 

the same transform to all image pixels, so that all  pixels with the 

same input value (i) have the same output value (o). However, 

spatial algorithms can convert identical  input values into  different 

output values. We discuss  techniques most appropriate for 

measuring the success of spatial algorithms. 

We would  like a simple figure-of-merit calculation for our 

favorite algorithm. We found that goal impractical. Spatial color 

algorithms  are in the middle of the imaging chain, and their 

success is affected by pre- and post-processing. There are a variety 

of  distinct goals for different spatial algorithms: one is to find the 

objects’ reflectance; one is to find the illumination; one is to make 

the best HDR picture; another is to model human vision. As well, 

there are different ground truth goals for  each type of algorithm. 

Instead of presenting a universal  solution to evaluate all  types of 

algorithms, we describe a number of steps measuring scene 

characteristics  that evaluate spatial processes. We describe 

examples of a number of control and test  experiments that  are 

useful in quantitative evaluation of portions of the imaging chain. 

This paper  provides test images, measurements  of  scene 

characteristics, and examples of a set  of flexible tools  for 

quantitative evaluations of spatial color algorithms. Quantitative 

measurements of spatial algorithms evaluate the true performance 

of  the central spatial process. This paper works  in parallel with 

<http://sites.google.com/site/3dmondrians/> that provides 

appendices for detailed data.

Introduction
We use spatial processing for modeling human vision, and 

rendering high-dynamic-range (HDR) scenes. Spatial processes are 

needed to render images that  cannot be processed using single 

pixel (Tone Scale) approaches. In human vision we see that color 

appearance does  not correlate with the quanta catch of the 

receptors. Appearance does not correlate with pixel value. [1,2]  In 

HDR photography we find  that spatial rendering  onto lower range 

display media avoids truncating scene information by converting 

HDR scenes into  LDR images appropriate for the media. In both 

cases, we use spatial information because pixel processes cannot 

solve the problem. 

The common point of the spatial algorithms is  that 

computations build up  the output  from the spatial information in 

the scene. They start with the quanta catch of the sensor pixel and 

apply spatial computations to make new image renditions, as does 

human vision. The spatial color family includes all the various 

Retinex implementations  that can differ quite remarkably in the 

way they transform the image and apply spatial processing. They 

include alternative spatial algorithms (ACE or RACE). They 

include image domain ratio-products, frequency based spatial 

filters, some tone rendering algorithms and bilateral filters. They 

all are nonlinear spatial transforms of the receptor quanta catch. In 

general spatial algorithms are applied to  the captured  scene 

radiance so as to render the scene data with improved image 

quality. Spatial color algorithms have been studied by many 

authors. < http://web.me.com/mccanns/Spatial/Processing.html.> 

Types of Evaluation 
There are both subjective and objective measurements of 

images. Subjective measurements ask observers  to select  the 

preferred rendition of an image. Objective measurements compare 

the algorithms output pixel  values in the processed image with 

ground truth. Ground truth is  the goal of the algorithm. There are a 

great many spatial algorithms, and they have a wide variety of 

goals. The ground truth for each algorithm is defined by its author, 

so one ground truth does not apply to all algorithms.

A second choice about evaluation techniques is  whether to use 

a single metric for all attributes, or a series that measure individual 

image characteristics. Although efficient, observer preference 

experiments cannot discriminate between the many attributes  that 

contribute to the judgement and measure their relative importance. 

Although more difficult, a series of objective measurements can 

help our understanding.

Beauty Contest
An effective subjective technique for evaluating  scene 

rendering is to ask  a number of observers to  select  the preferred 

image among different candidates. This is how photographic film 

response functions were determined. The weakness of this 

technique is that it provides little feedback on the underlying 

principles of why the algorithm works. We can identify the most 

preferred image, but learn little about why it is preferred. 

Moreover the judgement can be affected  by the display 

technique and setup. Large displays in a dark room has different 

visual stimuli than a small print. The monitor, its  color gamut, its 

profile, the display luminance, the ambient light on the screen, the 

viewing angle, and the image's visual angle all  influence the 

appearance of the array of calculated digits. 

Departures from Ground Truth
If reproductions actually replaced the light coming from the 

scene with an identical stimulus, then scene radiance would be the 

ground truth of image reproductions. Error metrics, such as the 

mean-squared-error comparing light from the scene, and that from 

the reproduction would be simple and effective. The problem is 

that reproduction media have response functions that transform the 

scene into a preferred rendition. Photographs do not reproduce 

scenes accurately. The preferred rendering is very different from 

scene radiances.[3] In order to perform a mean-squared-error 

calculation, model output vs. ground truth goal, we need 

information about  the model’s goal. For human vision, ground 
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truth is the appearance of the objects in the scene. For spatial 

algorithms that calculate objects’  reflectance, or for those that 

calculate the illumination on a scene, there are measurable ground 

truths, namely, the set of physical measurements of reflectance and 

illumination. The ground truth for the best-preferred reproduction 

of scenes has no universal definition. 

Rendition Quality Metric 
Can we find an  objective analysis of image rendering using 

error metric analysis?  First, we would need to  measure the error for 

each pixel  in a complex image. The error is a distance between the 

spatial processed output and the ideal ground truth. We also need 

to  compare these errors  in a uniform color space. In such  a space, 

apparent changes in hue, lightness and chroma are all  equal to 

numerical distances in the 3-D space. In uniform spaces, such as 

Munsell, the distance in the space represents the size of the change 

in  appearance, while in XYZ, RGB, and sRGB spaces distance 

does not equal change in appearance. In addition, camera digits 

follow sRGB guidelines, but  do not always follow the standard in 

regions near the limits of their color space along the color gamut. 

Built-in  color enhancement  firmware distorts these near-gamut 

regions of color space. In order to accurately  convert camera digit 

to  colorimetric XYZ, one needs detailed proprietary information of 

the signal processing in each camera. It  is impractical to  assume 

that we can transform the rendered camera response back into 

scene XYZ values and then convert  them into an accurate, uniform 

color space coordinates.

The second problem is that we need a goal image;  we need an 

array of perfectly rendered pixels. How does  one find the ideal 

rendered image of the scene? Algorithms that calculate physical 

quantities, such as  reflectance and illumination, have well-defined 

ground truths. Algorithms that calculate appearance, or seek to 

make the best, most preferred reproduction has to find a 

quantitative description of appearance, or preference, to use 

objective analysis. We can use the beauty contest techniques for 

finding most preferred individual  image, but in such experiments 

we find that the conclusions are image dependent. [4]  

Although it would be desirable to analyze images using error 

metrics, we see that the camera digit  rendition of the scene is not 

equally spaced and that ground truth depends  on the goal of the 

algorithm. Consequently, the single, universal objective 

measurement of combined properties  is not practical. Nevertheless, 

we need objective evaluation techniques to measure the 

effectiveness of algorithms. Instead of combining all  the properties 

of algorithms into a single metric value we can learn a great deal 

from the study of individual  image-processing characteristics. For 

this we need scenes with known radiometric values.

3-D Mondrians
This work  is based on  a series of experiments from the 

CREATE project.[5,6] The set of experiments used a scene with a 

Low-Dynamic-Range portion next to a High-Dynamic-Range 

portion in the same room at the same time. Both  LDR and HDR 

parts were made of wooden blocks painted with 11 different paints. 

The LDR blocks were placed inside an illumination cube so as to 

be as uniform as possible. The HDR blocks had two highly 

directional lights. 

This 3-D test target has been measured with a wide variety of 

techniques: measurements of objects (reflectances); the light 

coming from 104 facets (XYZ);  multiple exposure photographs 

using a number of different cameras; magnitude estimates of 

appearance of block facets; and watercolor paintings of the entire 

scene as a measure of appearance.  We employed a number of 

these scene measurements  to discuss possible evaluation 

techniques of spatial image processing.

Spatial Color Examples
Figure 1 is examples of images  from the 3-D Mondrian 

experiments: normal digital images, spatial processed images, and 

Carinna Parraman’s watercolor paintings.

Figure 1 shows LDR (top row) and HDR (bottom row) parts of the scene. The 

columns show normal digital photographs (left); the Vonikakis spatial image 

processing (center); and watercolor rendition of appearance (right).

Comparison 1 (Figure 1) shows different renditions of LDR 

and HDR CREATE scenes (rows). The left  column shows control 

photographs taken with a Panasonic DMC FZ5 digital camera (top, 

LDR; bottom HDR). The middle column shows the LDR and HDR 

outputs of a spatial algorithm (VV). The right column shows the 

Carinna Parraman watercolor painting of the scenes (rendition of 

scene appearance).

Figure 2 show the normal digital photographs (left); the HP 945 Retinex spatial 

image processing (middle); and watercolor appearance (right). 

VV is a center-surround image-processing algorithm, which 

employs both local and global parameters.[7] The local parameters, 

which significantly affect the new value of a pixel, are its intensity 

(center) and the intensity of its surround. The global parameters 

that affect the overall  appearance of the image are extracted from 

image statistics. The surround is calculated  using a diffusion filter, 

similar to the biological filling-in mechanism, which blurs uniform 
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areas, preserves strong intensity transitions and permits  partial 

diffusion in weaker edges. New pixel values combining local and 

global parameters, are inspired  by the shunting characteristics of 

the ganglion cells of the human visual system. The algorithm is 

applied only to the Y component. <http://sites.google.com/site/

vonikakis/software>

Comparison 2 (Figure 2) shows LDR and HDR control 

images captured by an HP945 digital camera, their spatial 

processed image along with the Watercolor painting of the scenes. 

(HP945).  The retinex algorithm is a menu selectable part of the 

image processing firmware (Digital Flash) in the HP945 camera.  

It is a multi-resolution retinex process with  ratio limits, described 

by  Sobol.[8,9]  Both  the VV and HP945 Retinex algorithms belong 

to  a subset  of spatial algorithms called Spatial Color Synthesis 

Algorithm (SCSA). These algorithms attempt to mimic vision. 

Measurements of LDR & HDR 3-D Mondrians

The scene has 2 identical sets of 3-D painted color blocks using 

only  11 paints on 100 facets. The LDR half is in nearly uniform 

illumination and the HDR half is in highly directional illumination. 

Calibration measurements of the CREATE 3-D Color Mondrians 

are available at  <http://sites.google.com/site/3dmondrians/> Table 

1 list the measurements. Camera images are multi-exposures (jpeg) 

of the LDR & HDR portions of the scene. Measurements of 

appearances are spectral reflectance measurements of paints in 

LDR and HDR watercolors. The artist recorded the appearances of 

the scene in non-uniform illumination on the watercolor painting 

made in uniform illumination. The reflectances of the watercolor 

are a measure of the scene appearance.[5]

Table 1 lists the data available on the web <https://sites.google.com/site/

3dmondrians/measurements> from the CREATE experiment. 

Scene Characteristic Analysis
Instead of looking  for a single, universal metric value, we need 

to  break the problem down into a number of practical questions 

that are possible to  implement, with objective measurements. We 

can use the above data sets to perform a number of different 

analyses that help us to understand the many characteristics of 

spatial image processing. Table 2  lists seven different comparisons 

that characterize the properties of the rendered image. 

Table 2 lists six characteristic tests of the image processing chain.

Data Available Format Source

Paint reflectance spectra, XYZ Spectrolino

LDR radiances LDR XYZ Konica Minolta CS100

HDR radiances HDR XYZ Konica Minolta CS100

LDR camera digits (sRGB) Multiple exposures

HDR camera digits s(sRGB) Multiple exposures

LDR appearances spectra, XYZ Spectrolino

HDR appearances spectra, XYZ Spectrolino

Test Segment Data A Data B !"#$%&'(#%&)$

1 *+,-()$%.)/-01)%) 23#4".3-0#&$% 3553(%-)5-0.)'/34

2 *+,-()$%.)/-01)%) 6+,-()$%.)/-01)%) 3553(%-)5-&//"2&$#%&)$

3 *+,-()$%.)/-01)%) *+,-40#%&#/-0.)(344 "$7#$%38-()20.344&)$

4 6+,-()$%.)/-01)%) 6+,-40#%&#/-0.)(344 7#$%38-()20.344&)$

5 *+,-7#%3.()/). 6+,-7#%3.()/). (1#$93-&$--#003#.#$(3

6 6+,-7#%3.()/). 6+,-40#%&#/-0.)(344 #003#.#$(3-:4;-0.)(344

The first comparison identified in Table 2  provides information 

about how the camera transforms the scene in image capture. The 

second shows how the HDR illuminations changed the camera 

response to the paints. The third analysis shows the effect of the 

spatial algorithm on the LDR image. This is a very important 

measurement because it  differentiates Spatial Color Synthesis  from 

Tone Mapping algorithms. A Tone Mapping process  that 

significantly improves the HDR rendition will also significantly 

alter the LDR rendition. A successful spatial algorithm will have 

no  effect on the LDR rendition. This component test looks for 

unwanted range compression of  LDR images.

The next component test measures the range compression of 

the HDR images by  the algorithm. Here, the goal is to  measure the 

amount of dynamic range compression for the circular target  in the 

shadow in the HDR image. The effect of the spatial algorithm can 

be seen by comparing the normal photograph with the spatial-

processed rendition.

The next test compares the compression found in the spatial-

processed output with appearance measured by the watercolor. If 

the goal of the algorithm rendition is to mimic human vision, then 

we should measure compression similar that found in the 

watercolor painting. The final tests listed use selected areas in  the 

target to evaluate the effects  of the processing on chroma and 

colors near white and black. These following examples evaluate 

the 11 paints in uniform illumination using the circular test target. 

We used this limited number of facets for simplicity of 

explanation. In most cases it would be appropriate to evaluate all 

the facets.

Results of Scene Characteristic Analysis 
Figure 3 illustrates the steps in image processing between the 

scene and display. Starting at the scene, cameras alter scene 

radiances with  camera glare, sensor sensitivity, color filters and 

signal processing, such as anti-blooming, noise reduction, 

digitization, de-mosaic, color enhancement and preferred tone-

scale shaping. We have grouped together all these transforms in the 

red box, identified as pre-processing. 

Figure 3 shows the steps in image processing. The middle two blocks 

illustrate the input and output stages of the spatial image processing (green 

box). The red box identifies the transforms found in cameras that convert 

scene radiance to camera digits. The blue box identifies the transforms found 

in display systems that convert rendered digits into display radiances.

At the other end of the processing chain we show a blue box 

that includes the post-spatial-processing transformation of rendered 

digit values into display radiances for viewing. These changes 

include the post-LUTS (device profiles), graphics card display 

systems, and unwanted device artifacts.[10,11]  In summary, there 

are a great many pre- and post-processing image modifications that 

complicate the analysis of spatial algorithms. 

Image
in CPU
memory

Scene Display
Spatial
Image
in CPU

Spatial
Algorithm

Glare
Sensor
Pre-LUT

Post-LUT
graphics 
card
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Test 1 - Effect of Profiles and Camera Firmware
We can see the effects of pre-processing by comparing camera 

digits  with the original scene. We know the reflectances (XYZ) of 

the paints on the blocks and on the circular test target on the back 

of the scene. We can use the sRGB standard to convert XYZ 

reflectances into expected sRGB digits. In  Figure 4 we plot  the 

sRGB values of the paint  (scaled  to 255 = 100% reflectance) to the 

HP 945 LDR camera response. Figure 4 shows that the normal 

HP945 photograph is darker for white, but lighter for grays and 

black, than the scene. This indicates that  the normal image should 

have had more exposure, and that the camera has changed the 

achromatic tone scale of the scene. The larger changes are seen in 

the chroma of the camera rendition. The sR responses to red and 

yellow paints are significantly boosted, while the sR response to 

green and cyan are significantly reduced. The sB responses to 

green, cyan and blue are boosted. These color transform effects are 

well known to be camera specific, and exposure dependent. This 

analysis becomes important when one uses images from different 

cameras.

Figure 4 shows the comparison of the circular test targets of sRGB paint 

reflectance vs. camera digit.

Any algorithm that  attempts  to calculate reflectances of objects 

from scene radiances can use this technique to objectively measure 

its success. The camera's sRGB response makes this difficult.

Test 2 - Effect of Illumination
The LDR circular test target has  11 paints is in maximum 

uniform illumination. In the HDR image, the circular target is in a 

shadow created by the box around it. Table 3 lists the changes in 

illumination as the difference in  log X, log Y and log Z between 

the radiances measured with the KM100 telephotometer.

Table 3. Changes in radiance for the 11 paints in the circular test target.

Compared to the LDR illumination, Table 3 shows the average 

HDR illumination on the circular target  is 5% X, 5% Y and 9% Z 

(linear) for this portion of the scene. The painted-circles image 

portion is easy, because the light is  uniform.  However, it is highly 

variable in the rest of the scene. Any spatial algorithm that attempts 

to  calculate the illumination falling on objects in all parts of the 

scene could use this technique to objectively measure its success 

for all 104 facets. The 3-D Mondrian HDR is a particularly 

difficult target for illumination  detection algorithms, yet  provides a 

good challenge. 

Test 3 - Unwanted Range Compression
The comparison of the normal LDR photograph with  the 

spatial rendition measures the amount the image processing has 

compressed the spatial  relationships  in  the image. Figure 5 shows 

the results  for the HP  945 images. Here we see that the average 

camera digits for all 11 paints in the circular test  target are almost 

identical. This means that  the spatial processing has not 

compressed the LDR image. If we had  used a Tone Scale map to 

compress the range of the HDR image, then that map would alter 

the LDR image. Appropriate spatial  processing does not  affect  the 

LDR rendition. The spatial process used  in Figure 5 shows no 

unwanted range compression of the LDR control image.

sRGB LDR circle vs. sRGB LDR retinex circle
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Figure 5 shows the effect of spatial processing on the LDR part of the scene. 

Test 4 - Wanted Range Compression
Table 4  compares the outputs  of the HP945 with its input 

image for the darkest  regions  of the HDR scene. It subtracts the 

input sRGB digits from the processed values. 

Table 4 lists the sRGB values of the 11 paint circular target in normal HDR 

photograph, the processed HP945 values and their differences. 

On average, this algorithm rendered the circular test target 22 

sR, 21 sG and 29  sB digits lighter (Table 4). These numbers give 

us  a quantitative measure of the scene’s spatial range compression 

for this particular algorithm. This pair of tests is essential to 

evaluating the success of spatial processing: leave the LDR input 

unchanged (unwanted compression), while maximizing the wanted 

range compressing for the HDR input.

Test 5 - Appearance LDR vs HDR
Table 5 lists the changes in appearance measured by the 

watercolor painting. We converted the reflectance spectra to XYZ, 

and then to  sRGB for the LDR and HDR portions of the watercolor 

On average, the HDR watercolor was darker than the LDR 

HDR sR HDR sG HDR sB
HDR sR 

SCSA

HDR sG 

SCSA

HDR sB 

SCSA
delta sR delta sR delta sR

white 6.9 12.6 25.5 40.8 49.9 73.2 33.9 37.3 47.7

grayL 3.8 4.8 12.9 29.0 34.7 56.6 25.2 29.9 43.7

grayM 2.6 2.8 6.5 22.6 25.5 40.1 20.0 22.7 33.6

grayD 1.2 1.2 2.9 14.1 12.3 20.6 12.9 11.0 17.7

black 0.6 0.5 1.7 8.4 7.0 14.0 7.8 6.4 12.3

red 7.5 1.2 2.6 44.8 10.8 15.0 37.3 9.6 12.4

yellow 9.2 5.1 2.6 50.1 36.2 21.3 40.8 31.1 18.8

green 1.3 2.6 4.4 9.2 25.2 24.1 8.0 22.6 19.6

cyan 0.9 3.4 9.7 9.7 28.4 49.5 8.8 25.0 39.8

blue 1.0 1.4 7.6 10.3 14.7 46.1 9.3 13.4 38.4

magenta 5.9 2.7 10.7 43.9 23.1 50.5 38.0 20.4 39.8

average 22.0 20.8 29.4

Effect of Compression
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watercolor by 20 sR, 24 sG, and 19 sB calculated digits. These 

numbers give us a quantitative measure of the human dynamic 

range compression. Spatial  algorithms that model  human vision 

can use the technique to objectively measure success.

Table 5 lists circular test target sRGB in the LDR /HDR watercolor painting.

Test 6 - Appearance vs. Algorithm Rendering
We see from the results  in Table 4 that the spatial  processing in 

the HP945 makes the images 20 to 30 units  lighter processed vs. 

unprocessed. Since we used the CREATE scenes  as test targets we 

can use the variety of data to make further comparisons. For 

example, we can compare the spatial algorithms with human 

vision. If we want the spatial algorithm to mimic vision, then the 

sRGBs of the processed images should equal those of the 

watercolor painting. In Table 6  we list  the sRGBs of the Carinna 

Parraman (CPHDR) painting. We also list the difference between 

the painting and the two spatial processes: HP945, and VV.

Table 6 compares appearance measured by the HDR watercolor painting 

(CPHDR) with spatial color renditions. The center columns are sRGB values 

of [HP945-CPHDR]; the right columns are [V V - CPHDR].

We see that the 20 to 30 unit  increases in HP945 image would 

need to be 115 more to accurately mimic vision, as measured by 

the watercolor. (If the set of HP945 images had more exposure the 

effects of processing would give slightly larger values. (The white 

sRGB in the painting is [253, 254, 246]; while the HP945 is [200, 

203, 207]). We see that  the values in VV algorithm in Figure 1 

would need to be about 100 units lighter. 

Most photographic algorithms are not designed to strictly 

match appearance. A model  of vision must predict appearance. 

However, quantitative comparison of photographic images with 

vision  is very  helpful  in establishing numerical goals of the model. 

Figure 6 plots the HDR sRGB values of the CP watercolor 

painting, the HP945 and the VV image renderings. While we see in 

that the VV is closer to the watercolor (Figure 6), it  does not 

CPHDR 

sR

CPHDR 

sG

CPHDR 

sB

HP945-

CPsR

HP945-

CPsG

HP945-

CPsB

 V V-

CPsR

V V- 

CPsG

V V-

CPsB

white 253.4 254.2 245.7 -245.0 -247.2 -231.7 -167.1 -170.9 -134.9

grayL 192.0 194.8 194.8 -151.2 -144.8 -121.6 -135.8 -135.1 -119.8

grayM 156.1 158.5 160.3 -112.2 -135.4 -109.8 -117.9 -119.1 -114.9

gray D 124.3 125.7 127.9 -79.6 -115.0 -112.9 -105.9 -105.7 -104.3

black 60.8 57.3 55.9 -46.6 -45.0 -35.3 -52.5 -46.7 -44.4

red 183.5 60.7 56.0 -173.2 -46.0 -9.9 -83.5 -49.4 -33.2

yellow 257.9 177.9 0.0 -207.9 -141.7 21.3 -143.6 -115.9 17.2

green 16.4 139.0 70.4 12.6 -104.3 -13.8 -9.0 -89.3 -50.5

cyan 131.7 207.4 219.4 -122.0 -179.0 -169.9 -116.7 -145.0 -135.7

blue 73.4 138.7 224.9 -64.2 -113.5 -200.8 -59.8 -111.9 -137.7

magenta 237.0 207.2 232.7 -214.4 -181.7 -192.6 -137.3 -166.7 -125.6

average -127.6 -132.1 -107.0 -102.6 -114.2 -89.4

Compare Appearance (watercolor) with HP945 and VV HDR rendering

approach the image range compression in humans. Any spatial 

algorithm that  attempts to make the best reproduction needs a  

different ground truth for optimizing that subjective analysis.

We can combine the results of these individual characteristics 

measurements. We see that the HP945 camera firmware and pre-

spatial processing profiles modified scene radiances. We see in 

Figure 4 an increase in chroma and a compression of gray-scale in 

the image without  spatial processing. These are distortions of the 

scene information by the cameras  conversion of light to sRGB 

values. We also see a need for more camera exposure for these 

images. We see that this  spatial processing did not introduce 

unwanted range compression of the LDR scene (Figure 5). We see 

that the HP945 spatial processing increased the sRGB values of the 

circular target in shade by about 20 units. The VV spatial 

processing increased those same values  about 20 units more than 

the HP945. Both processes  were considerably lower than the 

appearance values from the watercolor painting (Figure 6, Table 6). 

This comparison benefits from the advantage that they avoid the 

post-spatial-processing transformations that occurs in display and 

printing. 

Figure 6 compares the HDR watercolor reflectance sRGBs with those of the 

two HDR processed images. 

Discussion
This paper describes three parts of the puzzle of analyzing 

spatial algorithms:

 First, it provides the download source of multiple exposures of 

digital photos of LDR/HDR CREATE 3-D Mondrian test target.

Second, it  provides the measurements of paint reflectances, 

scene radiances and appearances of the LDR/HDR test target.

Third, it describes a few (6 tests) of the many possible analyses 

of image processing characteristics. Once one defines goal of the 

calculation, one can use these source images and calibration 

measurements to make objective evaluations of the characteristics 

of an algorithm.

With these examples in mind, one can measure the influence of 

camera pre-processing on all  104 colored facets for LDR and HDR 

images for each exposure. One can test an algorithm for 

undesirable range compression of LDR renditions. One can 

measure the amount of range compression for bright and shadow 

detail for HDR images. One can compare the algorithm’s range 

compression with that found in humans. The examples of spatial 

algorithms, shown here, are not intended to be examples of optimal 

processes. Rather, the intent is to illustrate the tools that identify 

departure from optimal. This paper is not about the success of 

these algorithms, rather the means to quantitatively assess possible 

improvements. 

The combination of photographs and measured data for the 104 

block facets makes  it possible to use spatial color metrics for these 

images. In  the above examples, we report on the input/output 
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values of single facets. The analysis  of images is not limited to 

pixel comparisons. We plan to  add spatial evaluation techniques, 

such as the comparison of ratios of pixel values, and the 

comparisons of multi-resolution segments of these images before 

and after spatial processing. Spatial evaluation metrics  is an 

ongoing part of this project.  Before presenting this  approach we 

are working to reduce the distortions in camera capture, namely 

improve the quality of the input image, based of the KM meter 

scene radiance measurements.

We began by  looking for the best  objective metric for spatial 

image processing. We described how the signal processing has 

three categories, each with many steps. The image capture (pre-

spatial processing) identifies all the operations between the light 

from the scene and the input for the spatial algorithm. Image 

display (post-processing) includes all the operations and hardware 

artifacts between the computer’s digital output and the light 

reaching the observers’  eyes. Profiles, or standards, are used to 

control these pre- and post-processing operations. They effect the 

process in two fundamental ways: First the distort the scene 

information, and second affect  the appearance of displayed images. 

These two large effect need to be isolated from the analysis of 

spatial image processes. Using different, or inappropriate, pre- and 

post-processing profiles invalidates comparisons of spatial 

algorithms. 

Quantitative measurements  of the spatial characteristics of the 

imaging chain are necessary because they can measure the effects 

of pre-processing and remove the effects of post-processing. 

Looking at an image on a display, or a print, includes the unwanted 

influence of the post processes. We begin with a scene. We can 

think of it as a set of three-dimensional scene radiances. They are a 

distribution in color space. These radiances are transformed by the 

pre-processing into a new, camera-specific distribution in  color 

space. The pre-processing has changed the relationship of these 

colors. We applied two spatial algorithms, each of which uniquely 

transforms the relationships of colors. When we view the 

processed images we add still another transform of color 

relationships with post-processing.

Comparing results of different spatial algorithms by looking at 

the pictures just measures how well the algorithm’s color-space 

rendition anticipates the display’s preset post processing. Each 

spatial algorithm creates a unique 3-D set of color outputs. That 

space may, or may not, be the one that the display is expecting. 

Without  individual optimal post-processing of each algorithm, 

visual comparisons are meaningless. Objective numerical 

comparisons, not visual  comparisons, give a better evaluation of 

spatial image processing. These numerical comparisons avoid the 

post-processing transformations. 

Summary
Although we would like to have a simple objective program 

that gives us  a reliable figure of merit for our favorite algorithm, 

we found this goal was impractical. The spatial color algorithm is 

in  the middle of the imaging chain and its success is affected by 

pre- and post-processing. The sRGB input and output values are 

not in a uniform color space, so  sRGB distances between actual 

and goal have variable differences in appearance. Mean-squared-

distance calculations  in a nonuniform 3-D space have questionable 

value. Post-processing properties of individual devices  add 

unknown distortions to the analysis.

There are a variety of goals  for different  spatial algorithms: one 

is  to find the objects reflectance; one is to find the illumination; 

one is to make the best  HDR picture; another is to model human 

vision. There are different ground truth goals for each type of 

algorithm.

Instead of presenting a universal solution to evaluate all types 

of algorithms, we describe a number of steps that evaluate spatial 

processes. We describe examples of a number of control and test 

experiments that are useful in quantitative evaluation of portions of 

the imaging  chain. The goal here is  to provide test images, 

measurements of scene characteristics, and examples of a set of 

flexible tools for quantitative evaluations of spatial  color synthesis 

algorithms. Whereas subjective selection of preferred pictures  is 

confounded by the effect of post-processing, quantitative 

measurements of spatial algorithms evaluates the true performance 

of the central spatial process. 
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