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Abstract
We present a framework to incorporate near-infrared (NIR)

information into algorithms to better segment objects by isolating
material boundaries from color and shadow edges. Most segmen-
tation algorithms assign individual regions to parts of the object
that are colorized differently. Similarly, the presence of shadows
and thus large changes in image intensities across objects can
also result in mis-segmentation. We first form an intrinsic im-
age from the R, G, B, and NIR channels based on a 4-sensor
camera calibration model that is invariant to shadows. The re-
gions obtained by the segmentation algorithms are thus only due
to color and material changes and are independent of the illu-
mination. Additionally, we also segment the NIR channel only.
Near-infrared (NIR) image intensities are largely dependent on
the chemistry of the material and have no general correlation with
visible color information. Consequently, the NIR segmentation
only highlights material and lighting changes. The union of both
segmentations obtained from the intrinsic and NIR images results
in image partitions that are only based on material changes and
not on color or shadows. Experiments show that the proposed
method provides good object-based segmentation results on di-
verse images.
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INTRODUCTION
Object segmentation is important to many computer vision

tasks and can facilitate image classification and image enhance-
ment frameworks. However, the diversity in image content
and lighting conditions of natural scenes makes accurate object
segmentation a challenging task [1, 2, 3]. Inhomogeneities, such
as shadows, specularities, changes of color within the object and
variation in pigment density will introduce gradients in the image
that can confound segmentation algorithms, resulting in multiple
distinct segments being assigned to one single object (see Figure
1b).
The goal of this paper is to determine where in images material
changes occur, i.e. to segment the image so that the segment
boundaries correspond only to object boundaries. We want to
avoid mis-segmentation due to variations in surface color and
shadows. To do that, we incorporate a fourth image channel,
which contains the near-infrared (NIR) scene information, into
our segmentation framework. NIR radiation ( 700nm− 1100nm)
generally penetrates deeper into an object’s surface and can
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Figure 1: The mean shift segmentation result of visible (IRGB)
and NIR images (INIR). The first row shows the color image and
its segmentation result, the second row is the NIR image and its
segmentation. Note the oversegmentation resulting from changes
in illumination PH

i or colors PC
i within the object.

reveal the underlying material characteristics [4, 5]. As such,
changes in intensity in the NIR image are due to material and
illumination changes, but not to color variations within the same
material.

Another source of mis-segmentation are shadows, which occur
due to the shape of the object and/or the geometric arrangement
of the object and the light source. Many algorithms have been
proposed to correct the color within the objects so the edges
corresponding to the shadows are not confounded with the object
boundaries [6, 7]. Some shadow removal frameworks try to
recover an image based on ratios of color bands, in which the
absolute intensity variation over an object is reduced so that the
result is invariant to shadows [8]. Inspired by the 4-sensor camera
calibration model by Finlayson and Drew [9], we combine both
visible RGB and NIR images to obtain an intrinsic image that
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is independent of illumination. Different pixel values represent
reflectance variations, thus color and material changes, but are
shadow independent. The union of the NIR and intrinsic image
segmentations results in segments that are only bound by material
changes, but not by color and shadow variations within the object.
Other image segmentation methods using data beyond the visible
spectrum is primarily applied in remote sensing applications [10].
The hyper-spectral images are captured with visible/infrared
spectrometers that measure the spectral reflectance of each
surface in the scene. To reduce the dimensionality of the original
dataset, feature extraction is done for each material. A classifier
is then applied on the reduced-dimension dataset [11]. Although
this scheme is appropriate for segmenting the hyper-spectral data
in remote sensing applications, it requires having a high spectral
resolution imaging spectrometer system and prior knowledge
of the material characteristics that need to be classified. In our
approach, we only use four channels, R, G, B, and NIR, and make
no a-priori assumption of the materials we encounter.
In Section 2 we address the scope of the problem and the
approach to the solution. Section 3 discusses the physics of
the possible relations between two patches within an object and
the properties of the color ratios across boundaries. Section 4
focuses on how we can form the images that are independent of
illumination. Section 5 presents the segmentation framework and
in Section 6 results are shown and discussed. Conclusions are
presented in Section 7.

THE PROPOSED APPROACH
Fig. 1 shows the segmentation result of a visible (IRGB) and

its corresponding NIR image (INIR). As illustrated in Fig. 1 (b),
different segments in the visible image {Pi

v |
⋃N

i=1 Pi
v = IRGB}

correspond to different parts of the object with different colors
as well as spatial inhomogeneities resulting from shadows and
shadings. Thus,

Pv ⊂ PC ∪PH (1)

where PC is the set of all the segments with different colors and
PH is the set of the segments in which the illumination is different.
In NIR images, on the other hand, changes in material, shadings,
and cast shadows are responsible for the different segments {Pi

n |⋃M
i=1 Pi

n = INIR} (see Fig. 1 (d) for illustration). Thus,

Pn ⊂ PM ∪PH (2)

where PM is the set of all the segments with different materials.
To get an accurate segmentation result, we need to eliminate dif-
ferent segments that are generated due to different illumination
conditions or varying colors within the same material. Thus, an
intrinsic image Iint , in which each segment {Pi

int |
⋃L

i=1 Pi
int =

Iint} belongs to either PM or PC includes significant information.
Incorporating this information along with NIR images, one can
simply derive a segmented object by applying the ”∩ ” operator.

Pint ⊂ PC ∪PM =⇒ Pint ∩Pn ⊂ PM (3)

where Pint and Pn are the segments of the intrinsic and NIR im-
ages, respectively.

(a) (b)

(c) (d)

Figure 2: Three different relations that can hold between the
color/NIR signals (C(λ )) of region (1) and (2) in the visible and
NIR part of the spectrum. (a) Two different regions, (b) part (2) is
under shadow, (c) (1) and (2) are of the same material but colored
differently, and (d) a color and material change occurs.

THE PHYSICAL PROPERTIES OF VISIBLE
AND NIR SIGNALS

Visible and NIR image intensities depend on the interaction
between the surface properties of the object, illuminants, and the
camera. The sensor response Ik of a sensor k : k ∈ {R,G,B,NIR}
with sensitivity Rk is therefore expressed as:

Ik =
∫ 1100

λ=400
S(λ )×E(λ )×Rk(λ ) dλ (4)

where S(λ ) is the reflectance of the surface and E(λ ) is the
illuminant spectral power distribution. Fig. 2 depicts two
different parts, (1) and (2), of an image, and three different
relations that can hold between the color/NIR signals (C(λ )) of
these regions.

C(λ ) = S(λ )×E(λ ) (5)

Depending on the location of the object with respect to the cam-
era and the light source, a shadow can be cast. This shadow results
in a reduction of measured intensity. We can describe the image
intensity in the lit and shadow part of the object Ilit

k , Ishade
k as fol-

lows (see Fig. 2 (b) for illustration). If

Ilit
k =

∫ 1100

λ=400
S(λ )×E(λ )×Rk(λ ) dλ (6)

then the shadow part of that object can be described as:

Ishade
k =

∫ 1100

λ=400
S(λ )×aE(λ )×Rk(λ ) dλ (7)

where a represents a fraction of the light intensity (0≤ a≤ 1).
We assume that the above statement is true for both VIS and NIR
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images, i.e., the ratio of the IRGB to the INIR response across a
material with certain color stays unaffected by changes in the
illumination. Thus, the following relations can be formulated:

[Ishade
R, Ishade

G, Ishade
B] = a[Ilit

R, Ilit
G, Ilit

B] and

Ishade
NIR = aIlit

NIR

=⇒ [Ilit
R, Ilit

G, Ilit
B]

Ilit NIR
=

[Ishade
R, Ishade

G, Ishade
B]

IshadeNIR
(8)

Although this assumption does not hold in general, as the ambient
illumination is not accounted for, it has been applied in other
color correction models [12].
The second relation is when both regions belong to the same
material, but are colorized differently (see Fig. 2 (c) for illus-
tration). NIR imaging is ‘transparent’ to a number of colorants
and dyes; it can see through the first layer to reveal the material
surface underneath [4]. Thus, the NIR images reveal more about
the material itself rather than its color.
The chemistry and the process of colorizing different mate-
rials makes each class of material have an affinity towards
a certain class of colorants (chemistry and functional bond
specific). Hence, even if the object colors are not transparent
to the NIR, the NIR response is more probable to be the same
(I(1)NIR = I(2)NIR) [6], because it is very likely that different
colorants applied to colorizing the material came from the same
chemistry. Consequently,

[I(1)R, I(1)G, I(1)B]

I(1)NIR
6= [I(2)R, I(2)G, I(2)B]

I(2)NIR
(9)

This assumption does not always hold, specifically when the color
is too dark.
Fig. 2 (d) shows the change in color and material in two regions.
In this case, the ratio of IRGB to INIR is not constant for the two
patches (see equation 9).

FORMING THE INTRINSIC IMAGE
Up to now, we have argued that R, G, and B to NIR ratio

images are potentially able to present changes that correspond to
either different materials or different colors within that material.
Inspired by the physics of the NIR and color signal of a surface,
we modify the algorithm by Finalyson and Drew [9]. This
algorithm tries to find the coordinates in which the ratio image is
invariant to both intensity and color of the illuminant. The color
constancy at a pixel algorithm is based on the assumptions that
Planck’s black body equation models the illuminant spectra and
the sensors’ spectral response can be modeled by the Dirac delta
function. With these assumptions, the logarithmic response of
sensor k for an illuminant E(λ ,T ) is:

log(Ik) = log(E(λk,T )S(λk)), E(λk,T ) =' K1λ−5e−
K2

T λk

log(Ik) =−
1
T
(

K2

λk︸︷︷︸
Ek

)+ log
(

K1λ
−5S(λk)

)
︸ ︷︷ ︸

Sk

(10)

where λk is the wavelength to which sensor k is sensitive to, Sk is
the reflectance of the surface being imaged at wavelength λk, T

(a)

(b)

Figure 3: (a) The log-ratio of 10 samples under different light
sources/shadows. The intensity ratio of all the samples under dif-
ferent lights lies along a single direction, (b) The chromaticity
space given by the projection onto the second and third principle
eigenvectors.

is the color temperature of the light, and K1 and K2 are constants.
The first term in this equation Ek depends on the illuminant’s
color temperature and the last part Sk depends on the surface
reflectance. Given 4 sensors k ∈ {k1,k2,k3,k4}, subtracting
the response of one logarithmic sensor from those of the other
3 sensors gives us the equation of a line in 3-dimensional
space in which the reflectance dependent part appears as the
intercept and the illuminant dependent part is the slope of the line.

log(
Ik1
Ik4

) = log(Ik1)− log(Ik4) = Sk1 −Sk4 −
1
T (Ek1 −Ek4)

log(
Ik2
Ik4

) = log(Ik2)− log(Ik4) = Sk2 −Sk4 −
1
T (Ek2 −Ek4)

log(
Ik3

Ik4

) = log(Ik3)− log(Ik4) = Sk3−Sk4−
1
T
(Ek3−Ek4) (11)

Thus, adjusting the color temperature of the light source T
changes the log-ratio of the sensor responses along a single direc-
tion, on which the location of the sample’s log-ratio depends on T .
The 3-dimensional space can be projected onto a 2-dimensional
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Figure 4: (First Column) visible images and (second column) the
illuminant-independent representation. To visualize images in the
new space, we present PC2 and PC3 as a and b values in the
CIELAB color space. Lightness value is chosen to be 60 for all
the intrinsic images.

space where illuminant induced variation is minimized, i.e., the
new 2-dimensional representation of any image will be indepen-
dent of the illuminant.
To employ this framework’s ability to extract descriptors, which
are independent of the lightning condition, we use R, G, B and
NIR camera responses (R,G,B = k1,k2,k3 and NIR = k4). In or-
der to find the new coordinates, pertinent to our camera, to map
the ratio image onto the corresponding illumination invariant im-
age, we measured the reflectances of 50 objects in the range of the
visible and NIR spectrum. Samples’ RGB and NIR intensities are
calculated under different Planckian light sources with the tem-
perature 3000,5000,6000,6500 as well as Equi-Energy.

The log-ratio, RIR, BIR and GIR, are computed as follows:

RIR = ln(
R

NIR
), GIR = ln(

G
NIR

), BIR = ln(
B

NIR
) (12)

Fig. 3 (a) shows the log ratio of 10 samples under 6 different il-
luminants. All the intensity ratios of the samples under different
lights roughly lie along a single direction. For all the samples un-
der different light sources, the covariance matrix can be computed
as:

cov =

 cov(R,R) cov(R,G) cov(R,B)
cov(G,R) cov(G,G) cov(G,B)
cov(B,R) cov(B,G) cov(B,B)

 (13)

The best coordinates can be calculated as the overall eigenvectors
of the covariance matrix. For our database, the eigenvectors are:

C =

 0.378 0.89 0.23
0.54 0.00 −0.84
0.75 −0.44 0.49


Samples’ log-ratio are projected onto the two eigenvectors

with smaller eigenvalues using the following equation:

[
PC2
PC3

]
=

[
0.89 0.00 −0.44
0.23 −0.84 0.49

]
×

 RIR
GIR
BIR

 (14)

Fig. 3 (b) shows the samples in the database in the new space.
In this space, each sample under a specific light source appears
as a dot and that sample under other light sources approximately
project to the same position.
To investigate the algorithm on real images, the log-ratio image
Iint is calculated and projected on the ”illuminant− independent”
coordinates (applying Eq. 12-14 at each pixel position). Fig. 4
shows the illuminant-independent representation of some images.
Fig 4 (c) and (e) are taken under an unknown illuminant. Their
results, however, are fairly invariant to the light source’s intensity.
This can be explained by the object reflectances in the NIR part
of the spectrum, as discussed in Section 3.
The primary drawback associated with this approach is its
inability to differentiate dark plastic objects situated close to
brighter objects (as illustrated in Fig. 4 (h) where a black object
is placed in front of the grey background or the white parts of
the doll). Carbon black is used as a pigment in rubber and dark
plastic products (polymers in general). This pigment reflects
almost no light in the visible or the NIR part of the spectrum and
appears dark in the visible and NIR images. Thus, the shadow
relation can hold between the black part and the brighter grey
parts, and these two parts will be mapped onto the same value.

THE SEGMENTATION PROCEDURE
The idea is to segment the illuminant-independent images as

well as the NIR images. As it has already been formulated in Eq.
1- 2, segments Pn in the NIR images are formed due to changes in
material or illuminant and segments Pin in the intrinsic images are
formed due to changes in material or color. Thus, logically, the
physical object boundaries are the ones present in both images.
To segment the images, the mean shift algorithm is applied to
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Figure 5: The flowchart detailing the segmentation framework.

both intrinsic and NIR images. Mean shift is an image clustering
method based on color and spatial features [13]. The main
idea behind the algorithm is to compute for every single pixel
a series of mean values in feature space. The mean is shifted
towards more densely populated regions in the feature space.
Each segment contains all data points in the attraction basin of
a convergence point. This approach does not require a priori
knowledge of the number of segments.

The feature space for segmenting NIR images was chosen to be
the pixel intensity, and for illuminant-invariant images, PC2 and
PC3 coordinates formed the feature vector.
A key feature to the implementation is that NIR images are
needed to be a bit over-segmented so that detecting all the
boundaries corresponding to the material changes is guaranteed.
Thus, for the NIR image segmentation, the resolution parameters
as the input of the mean shift algorithm were chosen 10% larger
than the ones for the intrinsic images.
After segmentation, the boundaries of each segment formed
a binary edge map. Since the resolution parameters of the
segmentation algorithm are different for the intrinsic and NIR
images, corresponding segments’ edges of these two images
may not intersect. Thus, the binary edge map was dilated by a
structural element of size 3.
The segmented object is the result of applying the ”∩ ” operator
on the edge map of the segmented NIR and illumination-inavriant
images. Fig. 5 exhibits the flowchart detailing the segmentation
framework.

RESULTS
All the images were photographed in the visible and in the

NIR range of the spectrum. The camera we used is a modified
Canon EOS 300D [14].
We compare the mean shift visible/NIR segmentation with mean
shift on visible images only. The results are shown in Fig. 6.
This comparison provides useful insights into how much more
accurately our segmentation procedure is able to predict the
physical object’s boundaries.
Comparing the result with the visible-only segmentation, one can
notice that regions in which a small gradient of illumination or
color exists were outlined as a single region. For instance, the or-
ange in Fig. 6 (e) and (i) is divided into different segments, using
just visible information, because of the changes in illumination,
while in Fig. 6 (f) and (j) the actual physical boundary of the
orange is detected as a single object.
As can be seen in Fig. 6 (i) and (j) on the green object on the
wall, precision in object boundary retrieval is higher using the
proposed framework. Variation of the illumination across the
scene makes visible-only segmentation results more sensitive
to the resolution parameters in the mean shift algorithm. In
visible-only segmentation there is always a trade-off between
the resolution value and the segments detected within an object.
In other words, when the resolution parameter is increased
many segments are identified within the object (i.e. the object
is over-segmented) but the object boundaries are detected with
precision. At a lower resolution, however, the segments within
the object are merged and hence fewer segments are identified,
risking the detection of the actual boundary of the object (i.e. the
tail of the object may be identified as a part of the background).
Our approach, on the other hand, results in more accurate object
boundaries, as we can increase the resolution parameter to
obtain the exact boundaries in both NIR and intrinsic image
segmentations. By applying the ”∩ ” operator, all the undesired
segments are removed.
The drawback of our approach is losing the dark plastic objects

in segmentation when they have a similar boundary as a lighter
object (see Fig.6 (f)). Another drawback of this method is the
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Figure 6: (First Column) visible-only image segmentation result,
(second column) segmentation result using joint information.

existence of some edges in the result that do not correspond to
any changes of material (see Fig.5: the segmentation result of
the doll around the eye and the collar). This mis-segmentation
occurs when there are many variations in the channel intensities
that are due to the illumination. In this case there will be so many
edges in the NIR segmentation corresponding to the changes of
illumination that may intersect with the changes of color in the
intrinsic image and form new segments.

CONCLUSION
We have presented a method that accurately detects physical

object boundaries in images using visible RGB and NIR infor-
mation. In order to discard the segments corresponding to color
changes within an object, we propose to use NIR image segmenta-
tion only. By combining the NIR information as the forth channel
along with RGB values to form an illuminant independent image,
we can achieve a shadow-free representation of the scene. The
union of the two segmentation results produce segments which are
only material dependent. By applying the proposed framework on
real images, we show that segmentation using NIR information as
well as visible images yields more accurate results in detecting
physical object boundaries.
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