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Abstract
The retinex theory of colour vision simulates certain features

of the human visual system and is used as a method for image en-
hancement. Since its introduction in 1971 many flavours of retinex
have been devised, which implement slight variations of the orig-
inal concept. For example, Marini and Rizzi developed a retinex
algorithm based on Brownian motion paths. However, while their
approach delivers interesting results, it has a high computational
complexity. We propose an efficient algorithm that generates
pseudo-Brownian paths with a very important constraint: we can
guarantee a lower bound to the number of visits to each pixel, as
well as its average. We then present a retinex implementation that
exploits the paths generated with this algorithm. In order to keep
the number of visits per pixel low, we take a multi-scale approach:
our path-based computation is performed at different scales of the
input image and each result is averaged with the result obtained
from larger scales. In doing so, we in effect combine the Brownian
motion approach with the scale-space method of the McCann99
algorithm.

In this paper we describe the details of our path generator,
and we show some images processed with our retinex implemen-
tation compared with those obtained with the McCann99 retinex
algorithm. The results show that, in general, the Brownian mo-
tion approach requires a smaller number of pixel comparisons
per scale to achieve similar output images.

Introduction
The retinex theory of colour vision, first introduced by Land

and McCann [15], was devised in an attempt to model certain fea-
tures of human colour vision. With the advent of digital imaging,
it found several applications. Image enhancement and restora-
tion [1, 21] is its most typical use, but it proved valuable as a tone-
mapping operator for high dynamic range images [12, 20, 22].
Broadly, we can divide retinex algorithms in two classes: scale-
space [1, 8, 19] and path-based [15, 17]. While in this paper we
are not concerned with the details of how retinex works, we can
say that the main idea of scale-space algorithms is to start from a
thumbnail of an image. The result of the processing on that is then
brought up to a larger scale, where it is averaged with the result
computed at that scale. This process is repeated up to the full-
scale image. This kind of algorithm is very efficient and therefore
it has been adopted by HP for their digital still cameras [22]. Path-
based retinex algorithms, instead, generate several paths for each
pixel, and the final pixel value is estimated by averaging the re-
sults of the computations along each path. For example, Marini
and Rizzi [17] propose to perform this computation using Brow-
nian motion paths. In figure 1 we show an example of a picture
processed with the McCann99 multi-scale retinex [19] (using the
reference implementation by Funt et al. [11]), and processed with
a Brownian path-based retinex.

Brownian motion is a time-dependent stochastic process Bt

(a) Original (b) McCann99

(c) Random path

Figure 1. Image from the Kodak dataset [14] processed with a scale-space

retinex (McCann99) and with our random path-based approach.

modelled after the observation of the movements of particles sus-
pended in a fluid. A process Bt has two properties [7]:

1. with probability 1 (i.e., “almost certainly”), the process is
continuous;

2. at each time step, the spatial displacement is random with
normal distribution. More precisely, given any two time in-
stants s ≥ t, the increments Bs − Bt are independent with
normal distribution having mean 0 and standard deviation
s− t.

Although Brownian motion is a continuous-time process, from
this second property one can imagine it represented by a path
that takes a random step in a random direction at discrete time
instants. Figure 2 shows an example with 1000 steps of time in-
crement 1, where in both dimensions the length of each increment
is a normally distributed random value with mean 0 and standard
deviation 1.

Brownian motion has strong links with the human colour vi-
sion. Zeki [23] found that the centroid cells in the region V4 of the
visual cortex are distributed in a manner that strongly resembles
Brownian motion. This fact was the motivation for Marini and
Rizzi [17] to propose an implementation of the retinex image en-
hancement algorithm based on Brownian motion. The drawback
of their approach is the computational complexity for generating
the paths: they state that the time for processing a 640×480 im-
age is about ten minutes, which is unacceptable. Although one
has to take into account that since the publication of Marini and
Rizzi’s work the speed of computers has greatly increased, it is
not yet feasible to embed such an algorithm in a hand-held de-
vice, such as a camera or a mobile phone.
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Figure 2. An example of Brownian motion in two dimensions.

Figure 3. A thousand steps of a path generated with our algorithm.

In this paper, starting from the work of Fredembach and Fin-
layson [9, 10] on random visits to the pixels of an image, we
propose an algorithm that generates pseudo-Brownian paths ef-
ficiently and guarantees the minimum and the average number of
times each pixel is visited (figure 3). These features are very use-
ful for a path-based retinex, but our approach has a drawback.
While its time complexity is low (O(N logN) on an image with
N pixels), it requires a large amount of memory to run and it is
therefore impractical to perform too many visits for each pixel, as
would be desirable. Thus, we devised another way to achieve a
large number of visits per pixel. With the scale-space approach
in mind, we apply the path-based computation on each scale so
that we can limit the number of visits per pixel. Furthermore, ex-
periments show that to obtain the same result as the McCann99
retinex [19], our approach requires on average a smaller number
of pixel comparisons per scale.

Figure 4. A generic graph (left), a planar connected graph (centre) and a

grid graph (right).

Hamiltonian paths on the pixels of an image
Visiting all the pixels of an image exactly once is a spe-

cial case of the problem known as Hamiltonian path, or traveller
salesman problem (TSP). While in general TSP is known to be-
long to the NP-complete class [4] (i.e., it is computationally hard
to solve), if the input is a grid graph (figure 4) there are algo-
rithms that belong to the class P, i.e., they can run in polynomial
time [3, 5, 9, 10]. The main idea behind these methods lies in
the construction of a minimum spanning tree (MST) or a random
spanning tree (RST) over the pixels of a subsampled version of an
image. More precisely, a graph is constructed having as vertices
blocks of 2× 2 pixels and edges connecting each block of pixels
to its neighbouring blocks (figure 5(b)). Then, a spanning tree
is computed (figure 5(c)) in O(N logN) operations, for example
using Prim’s algorithm [4], where N is the number of vertices in
the graph. Finally, on the tree a pre-order visit is performed (i.e.,
starting from the root each vertex is visited before its children),
which returns the sequence of visited vertices of the tree. This se-
quence contains each vertex more than once but, because vertices
are composed of four pixels, it is possible to obtain a path that
visits each pixel exactly once (figure 5(d)). If the visited spanning
tree is random, then this path is a random Hamiltonian path.

Random walk from Prim’s algorithm
The above procedure may at first glance appear complicated.

If we just generated a random walk we would “almost certainly”
visit every pixel [16] and, if the walk is long enough, visit every
pixel the same number of times. However, we wish to guarantee
we visit every pixel a certain lower bound of times, and a random
walk cannot do that. One possibility would be to generate many
random Hamiltonian paths. Unfortunately, a random Hamiltonian
path does not have a very “random” structure, or at least it is not
Brownian. The algorithm we propose here generates a pseudo-
random path over the pixels of an image (or, more generally, over
the vertices of a grid graph) and is similar in spirit to the TSP al-
gorithms described above. With our method we can set a lower
bound k to the number of time the path will visit each pixel; more-
over, we can prove that on average the path will visit each pixel
m = 2k times.

Since we want to visit each pixel multiple times, instead of a
spanning tree as in the above methods, we consider what we may
call a “spanning multigraph” (figure 6). A multigraph is a graph
where the set of edges is a multiset, that is, the same element can
appear multiple times within the set. In other words, a multigraph
admits more than one edge, also known as “parallel edges”, be-
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(a) (b)

(c) (d)

Figure 5. The original grid graph (a) is subsampled (b). Then, a span-

ning tree is computed (c), and after upsampling to the original resolution it is

possible to adjust the edges to obtain a Hamiltonian path (d).

tween any pair of vertices [13]. An element that appears z times in
a multiset is said to have multiplicity z. Given a connected graph
G = (V,E) (i.e., a graph that admits a path between any two of
its vertices), our algorithm generates a random multigraph whose
visit returns a random path on the original graph. We modified
Prim’s algorithm for MST [4] so that it considers each edge k
times, rather than just one. In short, Prim’s algorithm “grows” a
tree starting from a vertex of the graph, and adding one edge to
the tree at each iteration, so that the new edge will connect the tree
to a vertex that does not already belong to it. Thus, once an edge
is in the tree, it cannot be considered again because the two con-
nected vertices both belong to the tree. What we do is somewhat
similar but we use a different constraint: at each iteration, we add
an edge to the multigraph, but we allow to consider a new vertex
k times. More in detail, our algorithm works as follows. We start
with the multisets S = {r} (r is a vertex of G, i.e., r ∈ V ), Q = /0
and T = /0.

1. Repeat
2. Q = Q∪{(u,v)}, where (u,v) are all the edges so that u ∈ S

and v ∈V \S or v ∈ S with multiplicity less than k (this step
requires O(logN) operations).

3. Select randomly an edge (x,y) ∈ Q so that y /∈ S or y ∈ S
with multiplicity less than k; then T = T ∪ {(x,y)} and

Figure 6. A ternary tree (top), possibly obtained from a MST algorithm, and

a “spanning multigraph” as it might be generated by our algorithm (bottom).

S = S∪ {y}. If in Q there is no edge (x,y) satisfying the
requirements for y, we discard all the content of Q (this step
takes O(logN) operations). (In practice, every time we ex-
tract an edge from Q, we check whether it is valid or not,
and if not, we discard it and extract another one.)

4. Until Q = /0 (iterate O(N) times).

From the number of operations performed at each of these steps,
we can determine the computational complexity to be O(N logN).
When k = 1 this algorithm is equivalent to Prim’s algorithm for
MST, modified in order to generate RST (in Prim’s algorithm for
MST, step 3 always selects the edge with the minimum weight).
With k > 1, the resulting graph G′ = (V,T ) is a multigraph. Al-
though the original graph is not directed, it is easier to consider
each edge (u,v) as oriented in the way it is inserted in the set Q.
This leads to consistency with trees, whose edges always go from
“parent” to “children”, therefore conceptually we can imagine G′

as a ternary tree where the nodes are repeated several times. More
precisely, each node is repeated exactly k times because of the
following:

Lemma 1. Each vertex in the multigraph G′ has exactly k en-
tering edges, apart from the initial vertex r that has exactly k−1
entering edges.

This is what our algorithm does in step 3: it forces the num-
ber of edges entering each vertex to be k. From this property we
can compute the total number of edges in G′: if the initial graph
G has N nodes, we have |T | = (N− 1)k + k− 1 = Nk− 1 edges.
A pre-order visit of this tree yields the path with the desired prop-
erties and crosses each edge twice, once on its way from root to
leave and once on its way back. Therefore, the following holds:

Lemma 2. The final length of the path in an image of N pixels is
2kN−1.
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As a consequence of this property, it is straightforward to see
that on average the path visits each pixel 2k times when N is large.

From random walks to Brownian motion
The path generated with the above procedure shares features

with the random walk on a lattice. For example, we can mea-
sure that on average our path takes any of the four directions with
probability about 0.25 (although, if an image is rectangular, there
is a slight bias towards the longer axis). At every time step, a
random walk moves of one pixel in one of the four possible di-
rections (unless it hits a border of the image). However, as we
mentioned before, one of the features of the Brownian motion is
that the displacement is random. In each dimension, it follows a
normal distribution with mean 0 and standard deviation equal to
the considered time step [7].

Adapting our random path generator to Brownian motion
does not cause much computational overhead and the computa-
tional complexity stays the same. Unlike TSP algorithms, we do
not require the graph to be a grid – it is enough if it is connected.
Therefore we can slightly modify the geometry of the initial
graph, allowing normally distributed “jumps” of random length,
generated with Marsaglia and Tsang’s ziggurat algorithm [18]. In
more detail, the initial graph G that we consider in our algorithm
above preserves the neighbourhood structure of the image (i.e., it
is shaped as a grid graph, as in figure 4). Here, to the grid graph
we add some edges, which connect pixels that are not neighbours
in the image. Lemma 1 still holds, and so does lemma 2. The
visit to the obtained multigraph delivers a path whose displace-
ments are more similar to those of the Brownian motion. We have
the control over the statistic of the path: assuming that the time
step is 1, we can set it so that its displacements have a normal dis-
tribution of mean 0 and standard deviation 1. However, we found
that we obtain better results if we force the “jumps” to be slightly
longer, i.e., still random and normally distributed but with a larger
standard deviation (as for example in figure 3).

Multi-scale Brownian motion retinex
As we mentioned before, our data structure is efficient in

terms of time complexity but it requires a large amount of mem-
ory. We found that with k > 100 our algorithm is impractical to
run: one can quickly calculate that with k = 100, the length of
the path will be 200 times the number of pixels of an image. In
order to keep the number of visits for each pixel low, we adopted
a multi-scale approach. The algorithm we propose applies a path-
based retinex to the pixels of the image at each scale, following
the path generated with the above procedure. Retinex performs
ratios and products of pixel intensities, but because they are com-
putationally expensive, one can transform them into differences
and sums by taking the logarithm of the image. In practice, along
a path of pixels x1, . . . ,xn, we estimate the new value (or “new
product”) NP(xi) of the pixel xi as

logIP(xi) = logNP(xi−1)+ logxi− logxi−1 (1)

logNP(xi) =
1
2
(
logOP(xi)+min{logIP(xi),0}

)
. (2)

The first line of this formula represents the ratio and product oper-
ation of retinex and delivers the “intermediate product” IP(·). The
second line introduces two operations. First of all, the reset step,

represented by the minimum that clips the value of IP(·) to 1 (or
equivalently, its logarithm to 0). Second, the average as described
by Frankle and McCann [8]: every pixel of the image is visited
multiple times, and every time a new NP(xi) is estimated by av-
eraging IP(xi) with the “old product” OP(xi), i.e., the NP(xi) that
was computed during the previous visit. Finally, equations (1)
and (2) represent a generic iteration of retinex, which requires a
first step. Namely, (1) assumes that logNP(x1) = 0, that is to
say, NP(x1) is white. In (2) the value of OP(xi) is initialised to
the result of the smaller scale: our implementation is multi-scale,
therefore it operates on a thumbnail of the image, and the result
is then brought up to a larger scale, and so forth until the full-size
image is reached. In the smallest version of the image, logOP(·)
is initialised to 0.

(a) McCann99 (b) Random path

Figure 7. Rendering of a HDR radiance map (courtesy of Paul Debevec [6]).

To obtain this result, the McCann99 algorithm performs 32 comparisons per

pixel per scale, our implementation only 16 on average.

Results
In this section we compare the results of our algorithm with

those of the McCann99 retinex [19], using the reference imple-
mentation by Funt et al. [11]. In McCann99, each iteration on
each scale performs eight pixel comparisons (because it involves
a pixel and its eight neighbours) therefore we will count the num-
ber of comparisons rather than the number of iterations. We show
four examples of images processed first with the McCann99 al-
gorithm, and then with ours. We would like to stress at this point
that the images we show are not necessarily of good quality. In
fact, they are by choice images that have proven to be problem-
atic for retinex, because our purpose is to draw attention to the
differences between the behaviour of the two algorithms.

The first test image is displayed in figure 1, with a photo
taken from the Kodak dataset [14]. The McCann99 (32 compar-
isons per pixel per scale) causes a dark halo to appear around the
lighthouse, and smears the narrow frame at the bottom of the pic-
ture, while our approach (on average 32 comparisons per pixel
per scale) delivers an almost artefact-free result. In figure 7 we
show the rendering of a radiance map, from [6]. Both the Mc-
Cann99 algorithm and our random path retinex introduce halos
in the output image. The two images look quite similar, but Mc-
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(a) Original (b) McCann99 (c) Random path

Figure 8. This image, taken from [11], is typically prone to artefacts when processed with retinex algorithms. With a similar number of comparisons per pixel

per scale (32 with McCann99, and 32 on average with our approach), our method delivers a much more plausible resulting image.

(a) Original (b) McCann99 (c) Random path

Figure 9. Both retinex algorithms converge to the original image. This result is obtained with a multi-scale iteration scheme, that is, the smaller the scale, the

more iterations are performed. With 9 scales, the McCann99 algorithm compares each pixel 256 · 2s times with its neighbours, with s the number of the scale

(s = 1 is the full image). Our algorithm obtains this result with 16 ·2s comparisons only, again with 9 scales.

Cann99 requires 32 comparisons per pixel per scale, while our
implementation only 16 on average. Figure 8, taken from [11],
shows a dark halo around the white square in both images pro-
cessed with retinex. However, the McCann99 halo has a clear
bias towards the top-right of the image, because of the order the
pixels are compared. Moreover the halo is also “reflected” in-
side the white square. Our path-based approach produces a halo
as well, but its shape is less well defined than in the McCann99
output. Furthermore, there is no halo inside the white square and
the background is closer to the original black colour. Finally, fig-
ure 9 shows an example of convergence as intended by Brainard
and Wandell [2]: our algorithm requires fewer iterations (one six-
teenth) of those required by McCann99 to converge to the original
image.

Algorithm speed comparison for the image in figure 7.
Algorithm Complexity Time for 64 visits
McCann99 O(N) 12.6 s
Proposed approach O(N logN) 59.9 s
Marini and Rizzi O(kχN) n.a.

In terms of speed, with the same number of comparisons per
pixel McCann99 has the advantage. This algorithm has linear

complexity on the number of pixels and is therefore very efficient,
as we show in the table above for a 512×768 image. On the other
hand our random path approach requires fewer comparisons per
pixel to obtain results similar to those of the McCann99 algorithm,
and this can give some advantage to our method. We would like
to stress here that our implementation (in Matlab and C) is still
a prototype and with proper tuning it will be possible to achieve
significant speed-ups. As for Marini and Rizzi’s retinex [17], we
could not obtain a direct comparison because the authors did not
specify precisely how they generated their paths. However, the
complexity of their method depends mainly on the parameter χ ,
which tunes the length of the paths, and k, the number of paths.
The authors write that k tends to remain small, but do not give any
detail about χ .

Conclusions and future work
In this paper we presented an efficient retinex algorithm that

combines the advantages of Brownian random paths to those of
the multi-scale approach. In the comparison with those of the Mc-
Cann99 algorithm [11, 19], our results show less evident artefacts
with the same number of ratios per pixel (figures 1 and 8), and
similar output images with a smaller number of ratios per pixels
(figures 7 and 9). From this, we can conclude that the conver-
gence of our algorithm, as intended by Brainard and Wandell [2],
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is faster. Furthermore, our main contribution lies in the efficient
random path generator, an algorithm that requires only O(N logN)
operations and generates a pseudo-Brownian motion that visits
each pixel at least a fixed number of times.

In the future, we are planning to draw a comparison between
the paths generated with our algorithm, random walks and the
Brownian motion, to gain a better understanding of the links be-
tween our pseudo-random path generator and these stochastic pro-
cesses.
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