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Abstract 
 This paper proposes a cluster-to-cluster image color transform 
algorithm. Recently, Suntory Flowers announced the development 
of world's first blue rose “APPLAUSE”. Since roses lack the blue 
pigment, it was long believed to be impossible. The key to success 
lies in the introduction of blue gene from pansy into rose. In the 
previous paper, PCA matching model was successfully applied to a 
seasonal color change in flowers, though it’s not real but virtual. 
However, the tonal color transitions between the different color 
hues such as red rose and blue pansy were not so smooth but 
unnatural because of spatially independent color blending. In 
addition, the clear separation of blue or purple petal colors from 
greenish backgrounds is not always easy too. The paper improves 
the color transform algorithm in the two points, firstly, the clear 
color separation by introducing a “complex log” color space and 
secondly, the smoothed tonal color transition by introducing a 
“time-variant” matrix for PCA matching. The proposed algorithm 
is applied to ROI (Region Of Interest) image color transform, for 
example, a blue rose creation from red rose by continuous color 
stealing of pansy blue.  

Introduction 
 Image segmentation plays an important role in many 
applications. Color clustering is a low-level task in the first stage 
of color image segmentation. The color of nature changes with 
passing time. Natural images are composed of clustered color 
objects with similarity to be shared each other. A concept of color 
transfer between two images was introduced by Kotera’s PCA 
matching model [1] and advanced by Reinhard [2] as “scene color 
transfer” model. “Color stealing” by Barnsley [3] was a new 
concept of Fractal-based color sharing and used for synthesizing a 
new image by picking up a region color in one image and moving 
it into another image. Mochizuki [4] applied this idea to CG as 
“stealing autumn color”. Our previous papers [5][6] extended the 
PCA matching model to a time-variant color transform and applied 
to imitate a seasonal color change in flowers. The model worked 
well for transferring a petal color in the source image into a 
different petal color in the target image, provided that the hue 
change between the source and target petal clusters is gentle. 

 Recently, Suntory Flowers succeeded in the development of 
world's first blue rose “APPLAUSE”. Since roses lack the blue 
pigment, it was long believed to be impossible. The key to success 
lies in the introduction of blue gene from pansy into a source rose. 
Hearing this exciting news, we tested the PCA matching model to 
create a bluish rose from reddish roses by stealing a pansy blue. Of 
course, it’s not a real but a virtual flower. Though, the color 
transitions in hue and tone were not so smooth but unnatural when 
the source and target images have a large difference in their color 
tones. This unnaturalness comes from the spatially-independent 
color blending between source and target clusters. In addition, it’s 

not always easy to separate a dull-hued bluish or purple petal 
clearly distinguishing from the greenish background. 

This paper improves the color stealing algorithm by 
introducing the new ideas of 
a) Complex “Log-Polar Transform (LPT)” for clear segmentation 

of petal area by k-means clustering.  
b) “Time-variant PCA matching matrix” for smoothed color 

transitions from source to target.  
Fig.1 overviews the proposed color stealing model and its 
application to creating a unique bluish rose from red, pink, orange, 
or yellow roses. 

 
Figure 1 Overview of segmentation-based color stealing model 

Spatial Pre-Filtering for K-means Clustering 
In practice, k-means clustering has been conveniently used for 

unsupervised image segmentation. Since k-means has a drawback 
in nonuse of spatial information, JSEG [7] introduced an excellent 
post-processing of region growing and region merging to avoid 
over segmentations for the textural areas. Instead of post- 
processing, this paper introduces a joint spatial-range bilateral 
filter before k-means clustering to make smooth the textures. 

Joint LAB-Range Bilateral Filter 
Before segmentation, {L*, a*, b*} images are pre- processed 

by a bilateral filter to make the “texture” area smooth without 
degrading the edge sharpness as shown in Fig.2.  
The filtered pixel value IF (q) at central position q is given as a 
weighted sum of its surround pixels at p, where the spatial filter GS 
works active or inactive if the range filter GR has a high value for 
the low-gradient areas or a low value for the high-gradient edges.     
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Here, I(p)=L*(p), a*(p), b*(p) at pixel position p is assigned for 
each image plane of {L*, a*, b*}.  
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In comparison with normal k-means, the pre-processing bilateral 
filter clearly improves the segmentation accuracy. The typical rose 
images with vivid colors are mostly well segmented by the 
proposed K-means in normal CIELAB space as shown in Fig.3. 

 

 
Figure 2 K-means clustering with Bilateral filtering 

 

Figure 3 Segmentation results in typical roses by proposed K-means 

Clustering in Complex Log-Polar Space 

Motivation for Using Log-Polar Transform  
Although the vivid colored roses are mostly well segmented to 

their petal and the background in normal CIELAB space, the LPT 
is selected for the dull-hued roses as the occasion demands. 

Schwartz’s complex Log-Polar Transform (LPT) [8] is known 
as a topographic mapping model of visual field onto the cortex. 
Though LPT is a space-variant image encoding scheme used in 
computer vision, here it’s tested for the better separation of the 
clustered color objects from a point of mapping features of LPT.    

Two-dimensional LPT function maps a complex number z to 
another complex number log (z) as 

 xytanyxzejyxz j /, 122;      (2) 

    1;  jjlogjvuzlog               (3) 

It maps the Cartesian coordinates (x, y) to the log-polar space 
notated as (u, v).  

Since the origin itself is a singularity, the CBS (Central Blind 
Spot) model is introduced not to have the negative radii by setting 
the blind spot size 0   as 

     ,/, 0alogvu                      (4) 

Considering the discrete log-polar space with R rings and S sectors 
for integer numbers of u=1, 2, …, R and v=1, 2, …, S, we get the 
following relations [9] as 

  Rlogexpa R // 0                     (5) 

 11
01  

 aaΔ u
uu                       (6) 

 vΔSΔ vvv   ;21 /                    (7) 

Since the source points (x, y) in a sector area  
are mapped to the new coordinates (u, v), points on the circles 
around the origin with equal radii are placed at the parallel vertical 
lines. While, points on the lines outward from the origin separated 
by equal angle are mapped onto the parallel horizontal lines. 

Now assigning the (x, y) coordinates to the (a*, b*) values, the 
colors on the linear line with the same hue angle are mapped to the 
same horizontal line and shifted to the vertical directions for the 
different hue angles. As well, the colors on the circle with the 
same chroma (radius) are mapped to the same vertical line and 
shifted to the horizontal directions for the different radii. 

Complex Log-Polar Transform in CIELAB Space 
Applying the LPT to CIELAB color space, Eq. (4) is given by 

 */*,**** abtanbaejbaz j 122;    (8) 

Where, angledenotes the color hue in uniform perceptual color 
space CIELAB. 

L* value is also converted to the same logarithmic scale with 
the offset bias as 

  *Llogw         (9) 

Now, {L*, a*, b*} colors are mapped to the new complex LPT 
space {w, u, v}. 
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About Log Scale and Hue Continuity in LPT 
 Two simple questions maybe arise for the use of LPT. One is 
why the Log scale in the radius is useful. Both of Log-Polar and 
Linear-Polar transforms have been examined in the experiments. 
The other is a risk that any split in the single color cluster may 
happen across the hue angle0 and 2To avoid the split, 
shift (rotation) of hue angle is selectively performed on the 
image for crossing the a* axis (headed 4th to 1st quadrant). 

Complex Log-Polar vs. Linear-Polar Transforms  
Fig.4 (a) compares the color mapping results for Munsell 

color chips from normal CIELAB to complex Linear-Polar and 
Log-Polar spaces. It’s shown that the color chips with similar hues 
tend to be mapped onto the horizontal lines separated vertically 
depending on their hue angles and the chips with similar chromas 
onto the vertical lines separated horizontally depending on their 
chroma values. Fig.4 (b) is a result for dull-hued images. 

 
(a) Color mapping for Munsell chips (1600 colors) 

 

(b) Mapping and segmentation results for dull-hued rose mages(R=S=20) 

Figure 4 Comparison of mapping in Linear-polar vs. Log-polar spaces 

When the image colors are remapped onto complex LPT, their 
clusters are occasionally relocated to the easier segmentation. 
Fig.4 (b) shows the segmentation results for dull-hued bluish 
petals in comparison with normal CIELAB vs. Linear-Polar and 
Log-Polar spaces. In these samples, the petals are better 
segmented in the complex Log-Polar than complex Linear-Polar 
space in case of smaller numbers of rings and sectors, for example, 
R=S=20 or less. As the number of R and S increase, the lattice in 
(, ) coordinates is divided finer and the Linear-Polar resulted in 
much the same performance as the Log-Polar for R=S=100. Since 
CIELAB itself is a well-designed uniform color space with 
cube-root nonlinearity, it may be questionable to apply the 
logarithmic transform moreover. Of course, the complex 
Log-Polar transform is not always superior to normal CIELAB but 
dependent on the image. We need any criterion to judge which 
space has the better separability for the given color clusters.  

Cluster Separability 
 As a measure of goodness in clustering, the invariant criterion 
function is estimated based on the scatter matrices [10] as follows. 
The scatter matrix for the k-th cluster in subset Dk is described as 
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Where, Nk denotes the number of pixels in class k. 
The within-cluster scatter matrix SW is given by the sum of Sk as 





K

k
kW

1

SS                 (11) 

While, the between–cluster scatter matrix SB is defined by 
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The total scatter matrix ST is the sum of SW and SB as given by 

   BW
t

T SSmxmxS
Dx

 


                (13) 

Note that ST doesn’t depend on how the set of samples is 
partitioned into clusters. The between-cluster scatter SB goes up as 
the within-cluster SW goes down. Now, we can define an optimum 
partition as the criterion that minimizes SW or maximizes SB.  

The criterion function for the cluster separability is defined by  

  valueeigenhti theisTJ i
i

iBWraceWB .SS/  
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  ;
3

1

1  (14) 

Improved Clustering Results in Complex LPT 
The complex LPT may be selected for the dull-hued roses as 

the occasion demands. Fig.5 shows a comparative sample for the 
segmentation in normal CIELAB space vs. complex Linear-Polar 
and Log-Polar transforms with the cluster separability of JB/W.  

The petal areas are clearly segmented by applying complex 
Linear-Polar and Log-Polar transforms better than normal 
CIELAB space with the higher JB/W values. The performances by 
complex Linear-Polar and Log-Polar transforms are much the  
same for “Blue rose AppLause” and “Hybrid Tea Rose”, while 
Log-Polar is little bit superior to Linear-Polar for “Blue moon”. 
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Figure 5 Comparison in CIELAB vs. complex Linear- and Log-Polar spaces 

Region-based Color Stealing 
The proposed color clustering method is applied to a  

Segmentation-based cluster-to-cluster color transfer between two 
different images. The paper introduces a color stealing application 
for rose flowers. 

Cluster-to-Cluster Principal Component Matching  
The key to color transfer between two different segmented 

objects in source and target images is based on “cluster-to-cluster” 
PCA color matching algorithm [11] as follows. 

First, the source color vector SX in image S and the target 
color vector DX in image T are projected onto the vectors SY and 

TY in the common PC space by Hotelling Transform as 

    rsmean vecto:  , 
)()(
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μXAYμXAY
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TTTTSSSS

EE
,




   
 (15) 

SA and TA are the eigen vectors of covariance matrices SCX and 

TCX for SX and TX.  
Thus the covariance matrices SCY and TCY for SY and TY are 
diagonalized in PC space as given by 
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Where, iS and iT are the eigen values of SY and TY.   

Second, the source color vector SY and the target color vector 

TY are mapped onto the same PC axes and SY is transformed to 

match TY by the scaling matrix
 SST as follows. 

   
 3322 λ/λ,λ/λ,λ/λdiag

,

11 SΤSΤSΤΤS
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
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Connecting Eq. (15) to Eq. (17), the colors {SX} in the source 
cluster S is transformed to the set of destination colors {DX} that 
is approximately matched to the colors {TX} in the target cluster 

T by the matrix MC
7. MC matches the color hue by cluster 

rotation and the variance by scaling as 

   ASAM

XμμXMX

STST

TTSSD
1
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



C

C

,where     (18) 

Time-variant PCA Matching to Blended Clusters 
In the previous paper [5][6], the PCA matching model is applied 

to a time-variant sequential color transfer to imitate a seasonal 
color change in flowers. A most simple way for time-variant color 
transfer is to use cross dissolving [10] which creates a 
time-varying median image R by stealing the pixels from target T 
by the ratio of n and blending them with the source S by the ratio 
of (1-n) as follows. 

NnNnforn nnn ,,1,0;/)1()(   TSR  (19) 

But, the cross dissolving causes a double exposure artifacts due to 
the mixture of independent pixels in S and T. While, the PCA 
matching algorithm is applied to time-variant color change from S 
to T by just substituting the blended cluster R for the target T. The 
petal color in source S is changed gradually approaching to that in 
 the blended cluster R without double exposure artifacts, because 
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the color transfer is limited to the segmented areas in S and T.  
Though this model works well for the images with the similar 

color hues, unfortunately, the tonal color transfer is not always 
smooth between the big hue difference such as red to/from blue.  

Time-variant PCA Matching Matrix 
An improved algorithm is proposed to make the color 

transitions more smoothly between the clusters with big hue 
differences. Instead of time-variant color blending function by Eq. 
(19), a time-variant color matching matrix is introduced. 

Here, the matrix MC is modified to be variable according to 
the time-variant ratio of n as 

   
NnNnfor

n

n

CnnC

,,1,0;/
1





 MIM

     (20) 

MC(n) changes from I to MC according to the time sequence n=0 ~ 
1, where I denotes 3 x 3 identity matrix.  
Substituting MC(n) for MC in Eq. (18), the colors {SX} in the 
source cluster S is transformed to the destination colors {DX} with 
time sequence n, finally matching to the colors {TX} in the target 
cluster T like as 
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    (21) 

Fig.6 illustrates the basic concept of time-variant PC matching 
matrix model for cluster-to-cluster color stealing application.   

 

 
Figure 6 Time-variant PCA color matching matrix model 

Blue Rose Creation by Stealing Pansy Blue 
In 2004, Suntory Flowers Limited announced the successful 

development of the world's first blue rose "APPLAUSE", with 
nearly 100% blue pigment in the petals. Because roses lack blue 
pigment, their biotechnology research since 1990, introduced a 
blue gene from pansies into roses. 

Now the proposed time-variant PC matching matrix model is 
applied to create a blue rose from a red rose by stealing the bluish 
colors from pansy as same as Suntory, though this is, of course, 
not a real but virtual simulation. 
The results are compared with the popular conventional cross 
resolving method and our previous time-variant blending model  
The proposed time-variant PC matching matrix model clearly 
resulted in the smoother color transitions in the hue and gradation 
of intermediate (median) image sequences (see Fig.7 ). 

 

(a) Comparison in time-variant color stealing models 

 

(b) Time-variant blue Cherish creation by stealing Pansy blue 

 

(c) Time-variant other blue roses creation by stealing Pansy blue 

 

(d) Created different blue roses by stealing two types of pansy blues 

Figure 7 Creation of blue roses by stealing Pansy blues 
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Conclusions 
The paper proposed a novel approach to a segmentation-based 

ROI image color transformations. Image segmentation is the basis 
for Computer Vision, but there is no royal road to the unsupervised 
clustering method for unknown color objects. K-means clustering 
is a most popular algorithm for separating the color object with 
unique surface-color-hue without any learning samples.  

Firstly, the pre-processing by joint LAB-range bilateral 
filtering proved to be very effective for separating the petal area 
from the complex background.       

Secondly, paying our attention to the hue-oriented image color 
distributions, the color separability in clusters is newly discussed 
from a point of Schwartz’s complex LPT mapping. Since the pixel 
colors on the same linear hue lines with different hue angles are 
mapped onto the same horizontal lines but separated vertically, 
such color clusters are remapped to be more separable. Although 
the LPT is a well-known space-variant image encoding scheme 
useful for computer vision sytem but hasn’t any meaningful 
relation to the geometrical design in color space, it resulted in the 
distinct cluster separability for the segmentation of dull-hued cold 
color roses better than the normal CIELAB space. The invariant 
criterion on the cluster separability is estimated by using the 
scatter matrices and the complex Log-polar outperforms 
Linear-polar in case of small number of rings, R in the direction. 

However, the k-means clustering in LPT space is not always 
superior to normal CIELAB but is image-dependent. In order to 
switch on/off the LPT according to the image color distribution, a 
simple and quick pre-estimation tool for the cluster separability is 
desirable to be developed and is left behind as a future work.

Lastly, the segmentation-based cluster-to-cluster PCA color 
matching algorithm has advanced by introducing a time-variant 
matching matrix, coupled with complex LPT mapping scheme. 
The proposed color stealing model is successfully applied to a 
time-variant virtual blue rose creation from usual reddish or warm 
color roses, resulting in the smoothed color transitions.   
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