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Abstract 
Why do people like some colors more than others?  Why do 

they have color preferences at all? Recent results from the 
Berkeley Color Project (BCP) provide intriguing answers based on 
people’s emotional responses to diagnostically colored objects.  
We report preferences among 32 chromatic colors from 48 adults 
in the San Francisco Bay area and describe their fit to several 
color preference models, including ones based on cone outputs, 
color-emotion associations, and our own ecological valence theory 
(EVT). The EVT postulates that color serves an adaptive "steering' 
function, analogous to taste preferences, by biasing organisms to 
approach advantageous objects and avoid disadvantageous ones. 
It implies that people will tend to like colors to the extent that they 
like the objects that are characteristically that color, averaged 
over all such objects. The EVT predicts 80% of the variance in 
average color preference ratings from the Weighted Affective 
Valence Estimates (WAVEs) of correspondingly colored objects, 
much more variance than any of the other models. We also 
describe how hue preferences for single colors differ as a function 
of gender, expertise, culture, social institutions, and perceptual 
experience.  

Introduction 
Most people have a favorite color, and more name some 

shade of blue than any other,1-3 but there is wide variation  in color 
preferences across the general population. They are important for 
understanding people’s behavior both individually and as an 
aggregate population, particularly for their impact in the 
marketplace – what clothes, art, home furnishings, vehicles, and 
personal electronics we buy – and in the amount of enjoyment we 
get from using them. Numerous experiments over the last hundred 
years1-3 have taught us a great deal about which colors people in 
general like, and this is important for applications such as 
marketing.  

But why do people like the colors they do? Somewhat 
surprisingly, few people have a clear answer to this question, and 
very little is known scientifically, about why they like them. Below 
we discuss the answers to both the which question and the why 
question, but with a goal-oriented emphasis on why. First, we 
discuss several recently proposed theories about the causes of color 
preferences, and then we present our own alternative to them. Our 
ecological valence theory (EVT) assumes that people’s color 
preferences result from an adaptive process whose net effect is to 
“steer” people toward beneficial objects and situations and away 
from detrimental ones.   

We then present our own color preference data from 48 
participants who completed about many perceptual tasks on the 32 
colors we studied. When we test the quantitative fit of these data to 
four theories, we find that our data are clearly most consistent with 
the EVT: How much people like color-associated objects of the 
same color accounts for 80% of the variance in average color 

preferences, substantially more than any of the other theories.4 We 
believe that these results constitute a potential breakthrough in 
understanding why color preferences exist and how they arise. 

The Ecological Valence Theory 
Although much has been written about which colors people 

prefer, surprisingly little has been written about why they like the 
colors they do.  Most of the literature consists of psychophysical 
measurements that merely describe preferences without making 
any attempt to explain them.1-3 A few discussions relevant to 
answering the why question have appeared more recently, 
however.  

An important early attempt came from Nicholas Humphrey,5 
who proposed an evolutionary account. He suggested that color 
preferences arise from the natural “signals” that colors convey to 
organisms. For instance, the colors of flowers send an “approach” 
signal to attract pollinating bees, and the colors of poisonous toads 
send an “avoid” signal to deter potential predators. An organism 
whose color preferences are consistent with these signals – bees 
that “like” the colors of the flowers and predators that “dislike” the 
colors of the toad – will have an evolutionary advantage and tend 
to be selected as better adapted to their environment. This idea was 
picked up by Hurlbert and Ling,6 who used it to explain the color 
preferences they found in their psychophysical studies.6-9  They 
reported that 70 percent of the variance in their color preference 
data could be explained by linear combinations of the outputs of 
the three cone types in the human retina: those tuned maximally to 
short (S), medium (M), and long (L) wavelengths of light.6 They 
further found that both men’s and women’s preferences weighted 
quite positively on the S-(L+M) axis, meaning that colors that 
were more violet were preferred to colors that were more  yellow-
green. They also found that on the L-M axis, females weighted 
somewhat positively, preferring colors that were redder, whereas 
males weighted somewhat negatively, preferring colors that were 
more blue-green. (A subsequent experiment by Ling and Hurlbert8 
failed to replicate this result, as both males and females weighted 
negatively on the L-M axis, preferring colors that were more blue-
green than red, although they did find that females weighted less 
negatively than males on this axis.) Hurlbert and Ling proposed 
that this gender difference arose from evolutionary pressure in 
“hunter-gatherer” societies. They hypothesized that females prefer 
redder colors because their visual systems were selected for 
finding ripe (red) fruit against a background of (green) foliage.  
They did not interpret their other results in similar terms, however, 
failing to explain why males might prefer blue-green colors, or 
why both genders prefer colors that were more violet to ones that 
were more yellow-green.  

A second approach to the why question is based on the 
“feelings” or “emotions” colors arouse in viewers. Ou et al.9-10 
proposed an account of color preferences based on what they 
called “color-emotions,” which they defined as “feelings evoked 
by either colours or colour combinations.” The implication of this 
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hypothesis for the why question is that the valences (positivity-
negativity) of the emotions that are evoked by colors might cause 
people’s preferences for the corresponding colors rather directly. 
For example, if certain colors cause people to feel positive color-
emotions (e.g., clean, relaxed, and light), people should tend to 
like those colors, whereas if certain other colors cause them to feel 
negative color-emotions (e.g., dirty, tense, and heavy), they will 
tend to dislike those colors.  Ou et al.9-10 had participants judge 
their sample of colors on each of nine color-emotion scales (warm–
cool, light–heavy, modern–classical, clean–dirty, active–passive, 
hard–soft, tense–relaxed, fresh–stale, and masculine–feminine) as 
well as for preference and then performed a factor analysis on the 
results. They found that 66% of the variance in their preference 
data could be predicted from three factor-analytic dimensions 
derived from their nine color-emotions: active-passive, heavy-light, 
and cool-warm (where the first term is weighted positively).  Still, 
they left many unanswered questions.  They did not explain, for 
example, how color-emotions arise, why some color-emotions 
predict preferences better than others (e.g., why happy-sad, as the 
most strongly evaluative emotional dimension, is not included as a 
color-emotion), or even why some color-emotion scales seemed to 
be weighted in opposition to their valences (e.g., why cool is 
weighted positively whereas warm is weighted negatively).   

We propose the ecological valence theory (EVT) as an 
explanatory framework for color preferences that potentially 
unifies and extends these previous approaches. It is based both on 
the evolutionary premise that color preferences are fundamentally 
adaptive5-6 and on an emotional premise that affective valences 
underlie them.9-10 Generally speaking, the EVT posits that people 
(and other organisms) are better equipped to survive and reproduce 
if they are attracted to things whose colors “look good” to them 
and avoid things whose colors “look bad” to them. Color 
preference thus performs an implicit “steering” function that is 
roughly analogous to the steering function performed by taste 
preferences: People are better equipped to survive and reproduce if 
they eat things that “taste good” to them and avoid eating things 
that “taste bad” to them.  The EVT thus assumes an ecological 
heuristic that will be adaptive, provided that there is a positive 
correlation between how “good” vs. “bad” colors appear to the 
organism and the degree to which things that characteristically 
have those colors are advantageous vs. disadvantageous to it. In 
effect, the EVT suggests that the color preferences of an organism 
provide information about for the adaptive utility of environmental 
objects within it ecological niche.  There is no doubt that modern 
color technology has, to some considerable degree, subverted the 
adaptive significance of natural colors, because so many artifacts 
now can be found in virtually any desired color. Nevertheless, we 
believe that there is an underlying adaptive significance of color 
preferences that remains intact in modern society.  Indeed, we 
believe that some aspects of color preferences are specifically 
social, as we will mention briefly at the end of this article. 

The EVT predicts that the average preference for any given 
color over a representative sample of people should be largely 
predictable from the average affective responses of a similar group 
of people to correspondingly colored objects. That is, people 
should be attracted to colors associated with salient objects that 
generally elicit positive affective reactions (e.g., blues and cyans 
with positively valued clear sky and clean water) and repulsed by 

colors associated with salient objects that generally elicit negative 
reactions (e.g., browns and olive-colors with negatively valued 
biological waste products and rotting food).  These hedonic 
statistics about colored objects are assumed to integrate 
information from all objects of a given color, however, since there 
are also brown things that are likely to be positively valued (e.g., 
chocolate and coffee) and blue things that are negatively valued 
(e.g., bruises).  We test this central prediction of the EVT in 
Experiment 2 and compare its predictions for color preferences 
with the predictions of theories based on cone-contrasts, color-
emotions, and color-appearance. 

Environmental feedback from the outcomes of color-relevant 
experiences can influence evolutionary adaptation in at least two 
ways.  First, it could shape genetically-based preferences for 
evolutionarily advantageous colors over evolutionarily 
disadvantageous ones. These would presumably reflect universal 
biases in the ecological statistics of color for the relevant species 
(e.g., blue skies, red blood, brown feces). Second, environmental 
feedback could produce and modify preferences based on innate 
learning mechanisms whose function is to adaptively tune an 
organism’s color preferences during its lifetime to its particular 
physical and social environment such that it comes to like 
advantageous colors and dislike disadvantageous ones within its 
specific ecological niche.  To the extent that people have positive 
emotional responses to more advantageous outcomes and negative 
emotional responses to more disadvantageous outcomes, they 
should learn to prefer the colors associated with the former 
outcomes over those associated with the latter outcomes. Either or 
both sorts of mechanisms may be involved in causing people to 
have the color preferences they do. 

The best evidence about innate color preferences in humans 
comes from experiments with infants. Since babies can’t tell us 
what colors they prefer, preferences are inferred from measuring 
their looking behavior: How long do infants spend viewing a given 
color when it is shown in all possible pairs of colors during series 
of fixed duration trials and/or which color do they fixate first in 
such a series of trials?  Teller, Civan, and Bronson-Castain12 
studied the looking behavior of 12-week-old infants while viewing 
pairs composed of six high-saturation colors.  Figure 1A shows 
that the shape of this function, which has a maximum at blue and a 
minimum around yellow-green. Note that it is roughly the same as 
the average hue preference curve we find for adults’ preference 
ratings of high-saturation colors (see Figures 1B and 1C). (Similar 
hue preference functions have been reported by Valdez and 
Mehrabian13 and Simmons14 with adults who evaluated the 
pleasure and pleasantness, respectively, of colors.) The obvious 
caveat is that the infant preference functions of 12-week olds might 
actually reflect learning that has taken place during the first 12 
weeks of life.  Nevertheless, it is surely possible that these data 
result from a combination of a strong innate component and some 
additional learned component.  

According to the EVT, innate learning mechanisms modify 
color preferences from their starting point at birth and eventually 
lead to the adult preference functions we have measured, 
presumably reflecting many diverse influences beyond any innate 
component. As a person interacts with objects in the environment, 
he or she learns valences (positive or negative affective reactions) 
to colored objects, depending on the degree to which the 
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experiences are pleasant or unpleasant. To the extent that the 
consequences of the interaction are rewarding (e.g., biting into a 
delicious red apple or diving into a refreshing blue lake), an 
increment of positive affect is proposed to accrue to the 
corresponding color.  To the extent that the consequences are 
punishing (e.g., smelling feces or tasting rotten fruit), the 
associated color accrues a decrement in affect. Colors thus 
accumulate increments and decrements in affective valence by 
virtue of their association with correspondingly colored objects.  
The EVT thus implies that color preferences reflect the overall 
desirability of things associated with those colors to the given 
organism. 

The EVT further implies there will be different levels of 
factors that influence color preferences.  At the highest level, 
average color preferences for large, culturally diverse samples of 

people across the world will reflect universal (but probably 
species-specific) trends in the valence of colored objects. For 
example, we presume that virtually all adult humans like clear sky 
and dislikes feces, but it seems that many dogs and other animals 
are not nearly so averse to feces. At the more specific level of 
culture, systematic differences in cross-cultural studies of color 
preferences should be evident, but should co-vary with 
corresponding cultural differences in color-object associations 
(e.g., Japanese observers may associate a certain shade of reddish 
orange with Shinto shrines, whereas observers from other cultures 
would not) and/or differences in object valences (e.g., many people 
in Japan like eel, where it is considered a culinary delicacy, 
whereas those in other cultures may find eels disgusting).  

At a still more specific level, systematic sub-cultural 
influences may also exert influences on individuals’ affinities for 
colors that are strongly associated with special-interest societal 
groups, such as sports teams, universities, religions, and/or gangs.  
The EVT allows for the possibility that positive/negative 
interactions with members of such groups would result in 
increments/decrements in people’s preferences for the 
corresponding colors.  This is perhaps most obvious for street 
gangs, where there are overwhelming group sanctions for gang 
members to like their own colors and to despise their rivals’ colors.  
Other sub-cultural influences may arise from factors other than 
social institutions, if relevant beliefs are widely held.  For example, 
if a person believes that he or she “looks good” wearing particular 
colors due to their relation to their own physical characteristics – 
e.g., skin, hair, and eye color – then he or she may come to prefer 
those colors in general. At the most specific level, there will be 
truly idiosyncratic influences, unique to an individual. The color of 
grandma’s rocker, for example, might produce a noticeably 
positive influence on the preference for that color if the individual 
was fond of sitting in grandma’s lap as a child, but a negative 
impact if he or she disliked grandma and hated sitting in her lap. It 
would be impossible to tease apart all such idiosyncratic influences 
for any given individual, but some of them might be effectively 
isolated by careful study of the color associations and the object 
valences individuals have for specific objects that are important to 
them, as we will later suggest. 

Thus far, we been talking as if color preferences were stable 
over time, at least within individuals, but this is not the case.  If 
learning takes place in color preferences, as we believe that it does, 
then as people have the positive and negative experiences that 
cause their color preferences to be adjusted, then color preference 
are inherently dynamic.  Changes may also take place at higher 
levels. There may be systematic changes in color preferences at 
cultural and sub-cultural levels that occur over time – from weeks, 
months, and even years within an individual to seasons, years, 
decades, and even centuries within a culture.  Color fashions in the 
modern clothing industry change in fairly consistent ways 
seasonally and in less predictable ways annually. Even more 
dramatic are cultural changes that have occurred in color 
preferences over a span of decades to centuries.  Perhaps the best 
documented and analyzed example is changes in cultural 
preferences for blue.15 Pastoureau traces its history from a nadir in 
Roman times, where it was the least favored color, to its zenith in 
modern times.  He also provides an analysis of the complicated 
factors that seem to have caused changes in cultural associations, 

Figure 1. Hue preference functions for saturated colors in infants and 
adults. (A) Infants most prefer looking at blue and least prefer looking 
at yellow (Teller et al., 2004). (B) Preference patterns in aesthetic 
ratings for saturated colors by adults in the BCP.  (C) Data in B 
plotted in circular coordinates to highlight the difference between 
blue-yellow vs. red-green dimensions. Dashed curves indicate the 
overall similarity of the functions (A and B) and how they translate 
into circular coordinates. 
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which, in turn, seem to have been responsible for the dramatic 
increase in its popularity. In brief, the Romans apparently disliked 
blue primarily because it was so well liked by Rome’s enemies – 
especially the Celts to the north, who even painted themselves in 
ferocious blue symbols to prepare for battle – and it began to scale 
the preference hierarchy when it became associated with the Virgin 
Mary in the artifacts of the powerful Catholic Church. 

One of the great virtues of the EVT is that all of these factors 
– universal, cultural, sub-cultural, idiosyncratic, and even dynamic 
– can potentially be accommodated within its scope.   Moreover, 
carefully selected subsets of these factors can be studied 
effectively by using the kinds of psychophysical techniques we 
describe below (see also Palmer and Schloss4) with appropriately 
chosen categories of individuals. 

The Berkeley Color Project 

The Berkeley Color Project (BCP) is a large, systematic study 
whose goal is to understand color preferences within the larger 
context of color vision. There are three key features to the BCP: its 
massive repeated measures design, its sampling of participants, and 
its systematic, perceptually motivated sampling of colors.  

MRM Design 
The first important feature of the BCP is its massive repeated 

measures (MRM) design, in which the same observers provide data 
on many different tasks using the same set of colors. We have 
studied 48 participants performing 30 different tasks on the same 
32 colors, requiring more than 12 hours of data collection per 
participant. MRM designs allow the results for any given task to be 
related to other results from the same observers and the same 
colors from some other task. To understand how people’s color 
preferences relate to their color-emotion associations, for example, 
one needs to collect data of both sorts from the same participants.  
The same basic logic applies to any number of other aspects of 
people’s preferences for individual colors and color combinations.  

The following BCP measurements are most relevant to the 
present article: aesthetic preference ratings for individual colors, 
psychophysical ratings of color-appearance (i.e., how red-green, 
blue-yellow, light-dark, and high-low saturation each color appears 
to be), and ratings of Ou et al.’s “color-emotion” dimensions (i.e., 
how active-passive, warm-cool, and heavy-light each color appears 
to be).10-11 MRM designs provide the important advantages of 
within-subjects comparisons that are particularly desirable for 
studying a domain, such as color preferences, in which large 
individual differences are present.   

Participant Sample 
A second feature of the BCP is the nature of our participants.  

Here we present the initial data set collected in Berkeley, 
California, from 48 adults equally divided between men and 
women and between high and low color sophistication ranges, 
where the “high sophistication” group includes professional artists 
and designers and the low group untrained novices. This sample 
enabled us to study differences due to both gender and 
training/expertise. We are currently repeating many of these 
measurements in Tokyo, Japan, and Guadalajara, Mexico, to obtain 
information about universal vs. culturally specific features of color 
preferences. We also plan to collect preference data 
developmentally with infants and comparatively with macaque 
monkeys, but have no data from these populations as yet. 

Color Sample 
The third key feature of the BCP is the set of 32 chromatic 

colors we used, which were systematically sampled over the three 
most salient dimensions of color-appearance: hue, saturation, and 
brightness (see Figure 2). We effectively based our sample 
structure on the Natural Color System (NCS),16 although we 
actually selected the colors from the glossy series of Munsell 
chips.  As described in Palmer and Schloss,4 the sample included 
highly saturated colors of the four Hering primaries approximating 
the unique hues (hues that contain one and only one of the four 
chromatic primary hues17): red (R), green (G), blue (B), and yellow 
(Y), (Munsell hues 5R, 5Y, 3.75G, and 10B, respectively).  We 
also included four well-balanced binary hues that contained 

Figure 2. The colors of the BCP.  (A) The 32 chromatic colors of 
the BCP.  (B) The projections of these colors onto an 
isoluminant plane in CIELAB color-space. (See text for 
descriptions.) [A printed color version of this figure is available in 
Figure 1 of Schloss & Palmer (this volume) “Aesthetics of color 
combinations.”] 
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approximately equal amounts of the adjacent pair of unique hues: 
orange (O) between Y and R, purple (P) between R and B, cyan 
(C) between B and G, and chartreuse (H) between G and Y 
(Munsell hues 5YR, 5GY, 5BG, and 5P, respectively). We then 
defined four “cuts” through color space that differed in their 
saturation and lightness levels, as follows.  Colors in the 
“saturated” (s) cut were defined as the most saturated color of each 
of the eight hues that could be produced on our monitor. Eight 
colors in the “muted” (m) cut were those that were approximately 
halfway between the s color and the Munsell value of 5 and 
chroma of 1 for the same hue. Eight colors in the “light” (l) cut 
were those that were approximately halfway between each s color 
and the Munsell value of 9 and chroma of 1 for the same hue. 
Eight colors in the “dark” (d) cut were those that were 
approximately halfway between each s cut and Munsell value of 1 
and chroma of 1 for the same hue.  The l, m, and d colors within 
each Munsell hue were equivalent in Munsell chroma (saturation). 
This set comprised the 32 chromatic colors that were studied. We 
also included five achromatic colors – white, black, and the three 
grays whose luminance was approximately the average luminance 
of the eight hues in the l, m, and d cuts – although we report results 
for just the 32 chromatic colors in this chapter.  

Colors within cuts were not chosen to be constant in 
saturation and luminance, as Ling and Hurlbert had done, because 
we wanted to include highly saturated colors of the four unique 
hues, which are manifestly not equivalent in luminance or 
saturation. Unique yellow and blue, for example, vary dramatically 
in luminance, with unique yellow being much lighter. Moreover, 
our observers made psychophysical ratings of lightness and 
saturation, and we have the coordinates of the colors in Munsell 
and other color spaces, so that we could examine the effects of 
lightness and saturation that varied within cuts, if required.  

Experiment 1: BCP color preference ratings 

Color Preferences 
In both the first and the last testing sessions, each participant 

rated all 32 chromatic colors for aesthetic preference using a line-
mark rating task, in which they moved a cursor to a point along a 
400-pixel line (-200 to +200 pixels with a neutral zero-point in the 
center). The data are normalized to range from -100 to +100 in 
Figures 3-5. Each participant saw a different randomly determined 
order of the colors in all tasks. The correlation between average 
preference ratings indicated high reliability across these two 
sessions (r=0.92, p<.0001).  All subsequent analyses were 
performed on the data just from Session 1, because it provides the 
purer measure, uncontaminated by the subsequent tasks each 
participant completed. Average preference ratings (Figure 3) 
showed relatively strong effects of hue in the s, m, and l colors 
(F(7,329) = 9.75, p<.001), producing approximately parallel hue 
functions with a maximum at blue and a minimum at chartreuse.  S 
colors were preferred to l and m colors (F(1,47)=9.20, p<.01), 
which did not differ from each other (F<1). Hue and cut did not 
interact across s, m, and l cuts (F(14, 658)=1.66, p>.05), but they 
did interact strongly for the d cut versus the other three cuts 
(F(7,329)=17.87, p<.001). Dark-orange (brown) and dark-yellow 
(olive) were significantly less preferred than other oranges and 
yellows (F(1,47)=11.74, 41.06, p<.001, respectively), whereas 

dark-red and dark-green were more preferred than other reds and 
greens (F(1,47)=15.41, 6.37, p<.001, .05, respectively).   

Gender and Expertise Effects 
The 48 participants were balanced in gender and color 

sophistication (as assessed by questionnaire), with 12 individuals 
in each cell of this 2x2 between-subjects design. Figure 4 shows 
the average preference ratings divided by gender.  No reliable 
differences were present between males and females for the l and d 
colors (F<1), but a reliable interaction was evident between males 
and females for the s and m cuts (F(1,46)=11.42, p<.01): Males 
preferred s colors to m colors (F(1,23)=24.18, p<.001), whereas 
females trended in the opposite direction.   

Figure 3. Color preference ratings as a function of hue for saturated (s), light (l), 
dark (d), and muted (m) colors. 

 

!

Figure 4. Gender differences in color preference ratings as a 

function of hue for saturated, light, muted, and dark colors. 
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Figure 4. Gender differences in color preference ratings as a 
function of hue for saturated, light, muted, and dark colors. 
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The cause of this gender difference is not obvious, but it is 
compatible with a cultural interpretation: s colors are bolder and 
more assertive than m colors, fitting the cultural stereotype for 
males.  Supporting this interpretation, the gender difference scores 
for the 32 colors (male ratings minus female ratings for each color) 
were highly correlated with the gender difference score in active-
passive ratings for corresponding colors (r=0.73, p<.001), 
accounting for 53% of the variance.  Some readers may wonder at 
the seeming conflict between these preferences and male versus 
female dress patterns, given that males tend to wear more muted 
colors and females more saturated colors. The data make perfect 
sense, however, once one realizes that most people dress to attract 
members of the opposite sex. If the color preferences of gay men 
and lesbians are similar to those of straight men and women, 
respectively, then it would be consistent with our interpretation of 
the relation between dressing patterns and color preferences if gay 
men tend to wear more saturated colors (because they are dressing 
to attract other men) and lesbians tend to wear more muted colors 
(because they are dressing to attract other women). We know of no 
data on this subject, but it is consistent with cultural stereotypes 
about how gay men and lesbians tend to dress. 

 

 Figure 5 shows the hue preference functions from Session 1 
for the low versus high chromatic sophistication subgroups.  The 
more sophisticated participants liked chromatic colors more than 
did their less sophisticated counterparts (F(1,44)=6.22, p<.05).  No 
corresponding difference was present for the achromatic colors 
(F<1), discounting the possibility that the two groups simply used 
the rating scale differently.  Interestingly, there was an interaction 
between session (first vs. last) and artistic experience 
(F(1,44)=11.87, p<.01), such that the difference in preference for 
chromatic colors found in Session 1 disappeared by Session 8. 
Preference for chromatic colors increased somewhat over time for 
the novices (F(1,23)=6.38, p<.05) and decreased somewhat for the 
sophisticates (F( 1,23)=5.84, p<.05), such that they were not 
statistically different by Session 8 (F<1).  These changes are 
roughly consistent with Berlyne’s18 inverted-U function of 
aesthetic dynamics, provided that the novices are initially at the 
low end of the aesthetic exposure spectrum, where their aesthetic 
appreciation would be expected to increase with exposure, and 
sophisticates are initially in the middle-to-high end of the 
spectrum, where their appreciation would be expected to decrease.   

Experiment 2: Weighted Affective Valence 
Estimates (WAVEs)  

Experiment 2 was undertaken to test the central prediction of 
the EVT outlined in the introduction: Color preferences should 
largely be predictable from the average valences of people’s 
affective reactions to diagnostically colored objects, including 
ineffable “things” such as sky, water, and clouds.  We estimated 
average affective associations to colors by the following 
procedure.  First, we showed 74 observers each of the 32 BCP 
chromatic colors and asked them to write as many object-
descriptions as they could for each color in 20 sec.  The resulting 
3874 object descriptions were then filtered to eliminate items that 
(a) could be any color (e.g., crayons, paint, cars), (b) were abstract 
concepts instead of objects (e.g., peace, winter, Christmas), (c) 
were color names instead of objects (e.g., “Cal Blue”, “teal”), (d) 
were very dissimilar to the presented color (e.g., “grass at noon” 
for dark purple), or (e) were provided by only a single participant 
for all colors it described.   

The remaining descriptions were then categorized to reduce 
the number of descriptions to be rated in the valence-rating phase 
of the experiment. Descriptions that were judged to be essentially 
the same were combined into a single category (e.g., algae 
included the descriptions “algae,” “algae water,” “algal bloom,” 
“algae filled fish bowl,” and “algae floating on top of water”). The 
resulting 222 descriptive categories were then shown in black text 
on a white background to 98 different participants, who were asked 
to rate the affective value of the referent object from positive to 
negative using the same line-mark rating scale as in Experiment 1. 

We presented an additional set of 16 participants with each of 
the 222 object descriptions together with each of the 32 colors for 
which it had previously been given as a description, one pair at a 
time. Participants were asked to rate how well the characteristic 
color of the described object category matched the color on the 
screen using a line-mark rating task analogous to those described 
for the other tasks. These color-object matching ratings, scaled 
from zero to unity, were used as multiplicative weights in 
computing the average Weighted Affective Valence Estimate 

Figure 5. Color sophistication differences in color preference ratings as a 
function of hue for sessions 1 and 8. 
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(WAVE) for each object-color pair, such that the valences of the 
descriptions that better matched the color on the screen were 
weighted more heavily.  

Fitting the Models 
The WAVE data are plotted in Figure 6.  Their striking 

similarity to the corresponding chromatic preference functions 
(Figure 3) is supported by the high positive correlation between the 
two data sets (r=0.89), accounting for 80% of the variance with a 
single operationally-defined predictor. This performance is 
especially impressive considering that no free parameters were 
estimated in calculating the WAVE.  Even the weighting factor 
based on object-color match ratings is relatively unimportant, 
because unweighted average valence ratings are almost as highly 
correlated with the average color preferences (r=0.84). For 
comparison, we fit the same chromatic preference data to three 
other models. 

First, we fit Ling and Hurlbert’s8 cone-contrast model using 
multiple linear regression with four predictor variables: the cone-
contrasts of the test colors against the gray background for the L-
M, S-(L+M), and (S+L+M) systems, plus CIELUV saturation. 
This model accounted for 37% of the variance: 21% by S-(L+M) 
output (colors that were more violet preferred), 4% by S+L+M 
output (lighter colors preferred), 8% by CIELUV saturation (more 
saturated colors preferred), and 4% by L-M output (colors that 
were more blue-green preferred). The model’s markedly poorer 
performance on our data (37%) than on Ling and Hurlbert’s own 
data (70%) is very likely due to the wider gamut of colors in the 
present sample. Indeed, when their original cone-contrast model 
(Hurlbert & Ling, 2007) was applied just to the set of eight colors 
in the present study that are analogous to Hurlbert and Ling’s color 
set in having the same saturation and similar luminance (MO, MY, 
MH, MG, SC, LR, LG and LP), it was able to explain 64% of the 
variance, comparable to its performance on Hurlbert and Ling’s 
own data set. When the additional 24 colors in the present sample 
were included in the analysis, however, the cone-contrast model’s 
fit decreased precipitously.   

 
 

We also fit an NCS-like color appearance model using 
multiple linear regression with the four color-appearance ratings 
made by our own observers as predictors: red-green, blue-yellow, 
light-dark, and high-low saturation. This model accounted for 60% 
of the variance (multiple-r = 0.774, p < .01): 34% by blue-yellow 
ratings (blue preferred), an additional 19% by saturation ratings 
(high-saturation preferred), and a further 7% by light-dark ratings 
(light preferred). This color-appearance model explains more 
variance than the cone-contrast model primarily because the hue 
preferences conform more closely to rated blueness-yellowness 
than it does to S-(L+M), which is more accurately described as 
varying from blue-violet to yellow-green; i.e., the higher-level 
color-appearance space gives a better fit to the rated preferences 
than does the lower-level cone-contrast space. Nevertheless, even 
the color-appearance model fails to predict the salient interaction 
between hue preferences in the D cut relative the S, L, and M cuts. 
It also fails to explain why people prefer the colors they do; it 
merely provides a better description of the preference pattern than 
does the cone-contrast model. 

Finally, we fit Ou et al.’s10-11 three-factor color-emotion 
model using multiple linear regression based on our own 
participants’ direct ratings of active-passive, heavy-light, and 
warm-cool, including their non-linear transformation of the active-
passive factor.  This model accounted for 55% of the variance: 
22% by active-passive (active preferred), an additional 26% by 
warm-cool (cool preferred), and a final 7% by heavy-light (light 
preferred).  One oddity of this model, at least when interpreted as a 
causal hypothesis about why people like the colors they do, is that 
cool colors are preferred to warm colors (akin to the blueness-
yellowness differences described in the previous paragraph), but 
coolness is not preferred to warmness as general “feelings.” When 
asked to rate each of these six words in terms of how 
“positive/appealing” the feelings they described, our participants 
rated  “warmness”  (+127) as higher than “coolness” (+69), on our 
scale from -200 (least appealing) to +200 (most appealing). The 
ratings of the other terms were consistent with the expected 
outcomes, with light (+25) being rated as more positive than heavy 
(-66) and active (+111) as more positive than passive (-52). 

Despite the seemingly different semantics of these three 
models – cone-contrasts, color-appearances, and color-emotions – 
they are closely related because of the high correlations among 
their dimensions.  Table 1 shows that the three most important 
dimensions in the cone-contrast and color-emotion models both 
have average correlations of 0.85 with the three most important 
dimensions of the color-appearance model.  

In accounting for 80% of the variance in the average 
preference ratings, the WAVE predictor substantially 
outperformed the three other models we tested: the cone-contrast 
model (37%), the color-appearance model (60%), and the color-
emotion model (55%).  Moreover, it does so with fewer free 
parameters.  It is also better at capturing the primary qualitative 
features of the color preference functions: the pronounced peak at 
blue, the trough at chartreuse, higher preference for saturated 
colors, and the global minimum around dark yellow. Its main 
deficiencies lie in under-predicting the aversion to dark-orange 
(largely because chocolate is rated as very appealing) and under-

Figure 6. WAVE data for the 32 chromatic colors of the BCP. 
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predicting the positive preference for dark-red (largely because 
blood is rated as unappealing).   

Color 
Appearance 

         
S-
(L+M) 

Sat 
(CIELUV) 

           
L+M+S 

                
L-M 

Yellow-Blue **-0.88 0.12 **0.50 **0.56 

Saturation -0.15 **0.77 -0.11 0.27 

Light-Dark -0.30 **-0.48 **0.90 -0.07 

Red-Green 0.12 **0.59 -0.16 **0.67 

     

Color 
Appearance 

    
Warm-
Cool 

Active-
Passive 

   
Light-
Heavy  

Yellow-Blue **0.73 0.12 0.15  

Saturation 0.35 **0.85 *-0.41  

Light-Dark -0.11 0.29 **0.97  

Red-Green **0.62 0.22 -0.21  

         *p < .01, **p < .001 

Table 1. Correlations between color-appearance and cone-contrasts 
(top) and color-emotions (bottom). 
 

Equally important is the fact that the EVT, from which the 
WAVE is derived, provides a plausible answer to the why 
question: It claims that color preferences are caused by average 
affective responses to correspondingly colored objects.  Although 
the present evidence is correlational, it seems unlikely that 
causation runs in the opposite direction (i.e., that object 
preferences for diagnostically colored objects are caused by color 
preferences) because there are such clear counterexamples. 
Chocolate and feces, for example, are similar in color but opposite 
in valence.  Some third mediating variable could conceivably be at 
work, but it is unclear what that might be.   

Further critical tests of the ecological valence theory will 
come from cross-cultural studies of color preferences and their 
relation to corresponding WAVE data. The theory clearly implies 
that differences between color preference functions in different 
cultures should be predictable from corresponding cross-cultural 
differences in WAVE functions. We are currently collecting such 
data using the BCP colors in Japan, Mexico, India, and Serbia. 
WAVE functions in different cultures are likely to be different not 
only because people in different cultures see different objects and 
may have different affective responses to the same objects, but 
because the ecological valence theory implies that socio-cultural 
variables, such as flags and patriotic color associations, can also 
affect color preferences.   

The EVT also predicts that if people have highly positive (or 
negative) emotional investments in a social institution with strong 
color associations – e.g., an athletic team, gang, religious order, 
university, or even holiday – they should come to like the 
associated colors correspondingly more (or less) than the rest of 
the population, depending on the polarity of their relation to the 
institution. Preliminary results with university colors support this 
prediction: Among students at the University of California, 
Berkeley, the amount of school spirit correlates positively with 
preference for Berkeley’s blue and gold colors but negatively with 
preference for the cardinal red color of Stanford University, a 
strong rival institution.  If substantiated by further evidence of the 
opposite trends at Stanford, this finding would support the 
prediction that sub-cultural social institutions influence affect color 
preferences. Equally important, it would provide further evidence 
of the direction of causality, because it is wildly improbable that 
students’ attitudes toward universities are caused by their color 
preferences.  Students who like Berkeley do not do so because they 
like blue and gold; rather, they like blue and gold because they like 
Berkeley.  

We are not claiming that color preferences have no influence 
on object preferences; clearly they do, especially for functionally 
identical artifacts that come in a wide variety of colors, such as 
cars, clothes, appliances, and personal electronics (i.e., objects with 
low color diagnosticity as discussed by Tanaka et al.19).  
Widespread (and presumably effective) market research on color 
preferences for specific products presupposes that such effects 
exist. Notice, however, that these effects are also compatible with 
the EVT: To the extent that people like something that they 
bought, made, or chose because they like its color, their preference 
for that color will be reinforced via positive feedback, provided 
that they continue to value and enjoy that colored object.  Color 
preferences will thus tend to be self-perpetuating until other 
factors, such as boredom, new physical or social circumstances, 
and/or fashion trends, change the dynamics of aesthetic response, 
as indeed they inevitably do.   
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