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Abstract 
Extensive research in color naming and color categorization 

has been more focused on a small number of consensual color 
categories than towards the development of more subtle color 
identifications. The work we present in this paper describes an 
online color-naming model. In this context we evaluated the 
performance of two probabilistic estimation algorithms for 
automatic assignment of CIELAB coordinates into an arbitrary 
number of color names. The algorithms were tested on data 
gathered in a sophisticated online color naming experiment 
detailed elsewhere and summarized here. Our methodology 
resulted in practical color naming models that can support natural 
language image segmentation, with a computational simplicity that 
makes them suitable for online applications. 

Introduction 
Color is a principal dimension of visual communication and, 

when properly used, can be a powerful tool to communicate 
identities, emotions and ideas. Effective color communication is 
based on knowledge of visual perception [17]. It also depends on 
cognitive factors such as environment, language, age, gender and 
preferences of the audience to be addressed [11]. The human visual 
system is able to discriminate millions of colors, which tend to be 
organized perceptually into a smaller set of ‘n’ color categories 
named, for example, as red, green, blue, yellow and purple. This 
distinction between the perceptual and cognitive aspects of color 
defines the properties of perceptual color spaces derived from the 
attributes of ‘real’ colors perceived through our senses, while 
cognitive color spaces refer to the internal categorical 
‘representations’ of colors [8]. Psychophysical color-naming 
experiments offer the most direct and legitimate method to 
investigate the mapping between color names and corresponding 
regions of perceptual color spaces and over the recent years, color 
naming algorithms have been used for image processing [15, 19, 
22, 30], computer vision [1, 2, 29] and gamut mapping [16, 23]. 

This paper describes an online color naming model and 
evaluates two probabilistic approaches for automatic assignment of 
CIELAB coordinates into an unknown number of color names: a 
Fisherian method of Maximum Likelihood (ML), and a Bayesian 
method of Maximum a Posteriori (MAP) [26]. The performance of 
the algorithms was tested with basic and extended color 
vocabularies on image quantization that can be compared to other 
data reduction techniques. The intelligence of the models is based 
on the responses of thousands of participants of an online color 
naming experiment, which was designed and developed to access a 
large number of observers from culturally and demographically 
diverse population [25]. The web interface sequentially presents 
twenty stimuli against a neutral grey background and collects 
unconstrained color names with important information about the 
viewing conditions, display properties, color vision deficiency, 

response time, consistency and cultural background of each 
participant. 

In a previous paper we analyzed the quality of the most 
popular English dataset, the same dataset of 5428 refined 
observations that we are using to test our algorithms and verify our 
results in this paper. Our analysis confirmed that basic color terms 
were used more consistently and were identified more quickly than 
non-basic color names [24]. However, we also found that the 
majority of the responses involved non-basic color terms. The 
web-based methodology has been proved to provide high quality 
data when validated against previous studies conducted in 
laboratories [4, 27] and to be in excellent agreement with the 
findings of an existing web-based experiment [21]. Currently, the 
database holds more than 36,000 observations from over 1800 
participants in six languages and provides a unique resource for 
future research. 

Previous Work and Objectives 
Various methodologies have previously been proposed for 

developing color naming models derived from experimental data, 
including models based on crisp borders [16], prototype locations 
[19, 30], Bayesian learning [6], fuzzy set memberships [1, 2] and 
lexical histograms [22]. However in most of the cases the models 
were constrained to a small number of consensual color names and 
assumed a universal color categorization [3]. Taking into account 
the recent scientific findings that confirmed the influence of 
language on categorical perception [7, 10, 28] and the ability of 
non-expert users to identify 30 to 50 color names in their native 
language without training [5, 8], this assumption rather trivializes 
the complexity of human cognition and also implies that the color 
space should be only partially mapped by color language [12]. 

The present study suggests an alternative methodology, which 
supports the development of a worldwide distributed online color-
naming model composed by multiple Culture Dependent lexical 
sub-models, each based on the same numerical Culture 
Independent perceptual color model. In this user-centered designed 
framework that supports more subtle color specifications, each 
color name is bound to a color category in a particular cultural 
context [7, 11]. As a result, the flexible color naming architecture 
will be localized on the needs of each culture with significant 
advantages over universal models, since it will be able to 
communicate directly, more accurately and consistently the native 
color concepts of its users [5, 8, 15]. 

The following design goals guided the implementation of our 
methodology: 

• To support ‘n’ number of color names given in our 
unconstrained color naming experiment; 

• To automate the assignment of color coordinates in CIELAB 
to a compact color category/name with the highest probability of 
agreement with the observers of the experiment; 
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• To utilize a flexible probabilistic framework, which 
addresses the graded nature of category membership and captures 
different naming distributions; 

• To accommodate compatibility with parametric models in 
their shared parameters. 

Estimation of Parameters 
The ideas in work of Motomura [23] and Chuang et al [6] 

inspired the modeling approach of this study. Accordingly, we 
propose a probabilistic interpretation of Mahalanobis distances for 
fitting a Gaussian model to our experimental data. Since the 
estimation of conditional probability P(X=x|Y=y) of a color point x 
given a color name y, with our subset of data was unstable for 
imaging applications, the parameters of our models were estimated 
by their multivariate normal approximations. 

For each color name y from a set of color names y1,…., yT 
responded by the participants in our experiment, we calculated 
empirical mean µy and variance-covariance matrix Σy of test color 
patches x1,…., xn named y, the probability density function could be 
then estimated by: 
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where x is a test color specified in CIELAB and consty  is a scaling 
factor depending on µy, Σy and x1,…., xn which ensures that the 
probability distribution is equal to 1. It is noted that the exponent 
equals to minus half the squared Mahalanobis distance between x 
and µy. Fig. 1 presents the centroids µy of the most popular names 
in our English training dataset. 

To assign color coordinates to color names, we compared the 
performance between the, widely adopted in parameter estimation, 
Maximum Likelihood (ML) [18], and a special case of the former 
but less-used approach of Maximum a Posteriori (MAP). The 
maximum likelihood estimator is defined as: 
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Using the Bayes’ theorem, the MAP estimator is defined as: 
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It is worth noting that the ML estimator considers equally the 
entire training set of color naming responses, whereas the MAP is 
a Bayesian estimator using the frequency of occurrence of color 
names 

! 

ˆ f (y)  as a prior distribution to keep congruence between 
observed and classified data. In the special case that all color 
names occur equally often then both estimators are equal. 
Compared to classification by nearest neighbor with Mahalanobis 
distances, MAP and ML favors color names with high probability 
or high normalization constant. This means that the centroids of 
the training set are not necessarily equal to the mean of the 
predicted categories. 

 

Models Evaluation 
The estimated ML and MAP models can be evaluated with 

various measurements of goodness of fit. The CIEDE00 [13] color 
difference between centroids of the training set and centroids of the 
predictions was used as a metric to describe how well each of the 
proposed models fits the psychophysical data with basic (11) or 
extended (47) training set. Likewise, CIEDE00 was used to assess 
differences between the mean predictions of the model on 
independent data of the Radial OSA samples [20] and the training 
centroids when we used all the popular names in our dataset (47). 
Table 1 and Table 2 present the performance of both models.  

Table 1. Goodness of fit of Maximum Likelihood estimator 

ML estimator CIEDE00 
Munsell Grid (47 identified color names) 3.67 
Munsell  Grid (11 basic color terms) 3.9 
Radial OSA Grid (47 identified color names)  4.7 
 

Table 2. Goodness of fit of Maximum a Posteriori estimator 

MAP estimator CIEDE00 
Munsell Grid (37 identified color names) 5.65 
Munsell  Grid (11 basic color terms) 3.28 
Radial OSA Grid (36 identified color names)  5.85 
 

The evaluation of the models in terms of goodness of fit 
resulted in CIEDE00 of 3.67 for ML and 5.65 for MAP method. 
The precision of the ML model deteriorated on the Radial OSA 
samples, whereas the MAP approach resulted in a mean CIEDE00 
similar to the first evaluation, despite the differences in distribution 
between the two sets.  
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Figure 1. Location of 47 centroids of the training set in CIELAB 
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To explore the performance of both models against the results 
of constrained color naming studies, in Table 3 we present the 
color differences ΔΕ(ab) [13] for green, blue, yellow, red, purple, 
orange, pink and brown between the centroids of our predictions , 
when we constrained the training set to the eleven basic color 
terms and the psychophysically rigorous results of Boynton & Oslo 
[4] and Sturges & Whitfield [27]. 

Table 3. Comparison of predictions with previous studies 

B&O - M&M S&W - M&M B&O - M&M S&W - M&M 

ΔE(ab) (MLE Predictions) ΔE(ab) (MAP Predictions) 

14.03 9.82 10.64 6.58 

20.46 13.63 18.99 12.69 

12.72 19.96 10.24 17.28 

10.41 9.16 13.83 5.28 

35.74 19.29 29.81 14.12 

6.34 9.68 5.38 7.37 

30.01 20.92 26.31 18.58 

13.21 15.78 11.88 13.22 

Mean 

17.86 14.78 15.88 11.89 
 
 

For ML, the comparison with the results of Sturges & 
Whitfield resulted in mean ΔΕ(ab) of 14.78 while with the findings 
of Boynton & Oslo on color differences found 17.86. The MAP 
estimator produced better results with a mean color difference of 
15.88 and 11.89 with the results of Boynton & Oslo and Sturges & 
Whitfield respectively. 

Image Quantization 
Extracting the perceived color from an image can operate in a 

similar way to various quantization algorithms for data reduction. 
The first step was to test the performance of both models with a 
basic and an extended training set to segment the synthetic image 
used by a recent published color-naming algorithm [29], shown in 
Fig. 2 and 3. The coordinates of their centroids in the experimental 
data were used to color each color category of both models.  

Although the challenging synthetic image consisted of a 
continuous gradation of highly saturated colors in various lightness 
levels, both algorithms successfully classified the total number of 
pixels without artifacts at the borders. In terms of implementation, 
both models offer computational simplicity and fast performance. 
Specifically MAP can be computed with one extra matrix 
multiplication and for a single CIELAB triplet requires only 9.6% 
more processing time than ML. A summary of color naming 
statistics is presented in Fig. 4 and Fig. 5 to provide an insight 
about the principal color names identified in the image for ML and 
MAP with an extended training set. 

 
 

Figure 2. Segmentation of synthetic image in CIELAB. Upper left 
Original image, upper right PLSApg model, middle right ML-training 
set of 11 terms, middle left MAP-training set of 11 terms, low left ML-
training set of 47 terms and low right MAP-training set of 47 terms. 

 

Figure 3 Synthetic image in CIELAB. 
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Using the ML approach, the synthetic image was segmented 

into 30 categories whilst the MAP method favored 20 color names 
in wider cultural use. Restricting the training set to basic color 
terms produced misleading color identifications, for example an 
area identified as brown was named as tan or beige by the majority 
of our observers. 

The cognitive representation of statistical regularities of 
natural images can be used to encode them more efficiently, since 
color-naming algorithms can combine neighboring regions that 
share the same cognitive color concept. Fig.6 shows the 
performance of ML and MAP models in image segmentation of 
natural images. The segmentation of natural images showed that 
the ML approach produced better results for users with a non-basic 
color vocabulary, since the favoring of more frequent color names 
of MAP resulted in the loss of important face information and 
caused a large area of burgundy to be classified as brown on the 
poppies. 

 

Discussion, Conclusions and Future Plans  
We have presented a flexible color naming architecture for 

automatic assignment of color coordinates to color names based on 
Maximum Likelihood and Maximum a Posteriori estimators. The 
strength of our methodology lies in the fact that both algorithms 
can operate online with a large database of a web-based color 
naming experiment with important additional information. This 
allows the training set to be adapted to the color vocabulary of the 
users. 

The evaluation of the models showed that the goodness of fit 
of the parameters predicted by ML was slightly better than that 
provided by MAP, however the precision of the latter was more 
consistent on both sets. Given that both algorithms were evaluated 
on grids, a possible explanation for the errors could be the 
replacement of the conditional probabilities with their normal 
approximations. However, the smoothed categories stabilized the 
classification procedure, which is an important requirement in 
imaging applications. In addition, the comparison of the predicted 
color categories with rigorous psychophysical studies resulted in a 

significant improvement than we had previously reported. The 
superiority of ML in segmenting natural images indicates the need 
to select the model according to the application. However, the 
question, whether we prefer MAP or ML approach, is equivalent to 
whether we take into account that color names are used equally or 
not.  Both models appear to be suitable for online applications, 
given their computational simplicity and fast performance.  

Further work is still needed to develop a comprehensive 
online color-naming model, including psychophysical validation of 
the performance of the model and investigation of the distribution 
of the extended color vocabulary. Given that each color name is 
associated with specific categorical viewing conditions in the color 
naming dataset, the next step should be the improvement of the 
model to compensate for color appearance issues. Differences 
between responses according to language, age and gender will also 
be investigated. 

On the World Wide Web color specification is not only the 
domain of experienced color users, but is a facility required by 
large audiences with a need to communicate about color out of 
their local physical environments. The ongoing study reported here 
has made a practical contribution to color communication within 
different cultures. 
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(i)          (ii)      (iii)          (iv)      (v) 
Figure 6. Image segmentation of natural images using ML and MAP estimators. (i) Original image, (ii) ML-training set of 11 terms, (iii) MAP- training set of 11 
terms, (iv) ML- training set of 47 terms and (vi) MAP- training set of 47 terms. 

 
 

Figure 4. Image segmentation of natural images using ML and MAP estimators. (i) Original image, 
(ii) ML-learning set of 11 terms, (iii) MAP-learning set of 11 terms, (iv) ML-47 terms and (vi) MAP-
learning set of 47 terms. 
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