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Abstract
Measuring image quality is a complex process that often re-

quires elements of subjective analysis in order to be reliable when
the final judge is a human observer. Preference studies show that
slight variations in colour have drastically different outcomes in
quality perception depending on where they occur. A few ∆E of
difference in the colour of a wall may be unnoticed, while a shift
of a single ∆E on a face will have a major impact. The perceived
quality of images does not in general depend on the image as a
whole, but on a few salient regions within. Measuring saliency in
images is essential to identify which parts of an image are of par-
ticular importance to human observers for subsequent processing.
Consequently, a number of algorithms have been developed, that
purport to automatically predict an image’s salient regions.

Most saliency algorithms are based on low-level cues, be
it the physiology of the human visual system or image statistics,
and are designed with a broad scope in mind. However, studies
of human attention and eye movements show that visual attention
maps vary significantly depending on the task, due to the influence
of high-level cognitive processes.

Identifying important regions for perceptual image quality
measurement being a critical task, we devise an experimental
framework to obtain visual attention maps and compare these to
the saliency maps predicted by state-of-the-art algorithms. Mea-
sures of correlation and precision-recall curves indicate that au-
tomatic saliency measurement is not much better than random,
and far from the performance of observers, perhaps suggesting
that image quality assessment has more to do with high-level cog-
nitive processes than with low-level vision.

Saliency and visual attention
The word saliency is frequently used in the literature, al-

though it sometimes mistakenly defines a range of different phe-
nomena to denote “regions or areas of interest”. In fact, saliency
has a much narrower definition, relating to bottom-up perception;
the term visual attention is employed when perception is driven
by a top-down process [14]. When a human views a scene, the
bottom-up approach dictates that gaze fixation sites are the by-
product of local scene statistics (e.g., contrast, colour) only. The
saliency of an object is thus assumed to be directly linked to these
local statistics, regardless of the scene content [23].

The top-down model, on the other hand, is a cognitive one
and is task-driven instead of stimuli-driven, i.e., observers think
about the task they have to address when viewing a scene and the
points where they fixate their attention are determined by the task
at hand, not only local scene statistics [24].

Being derived from scene statistics only, saliency is much
easier to address than visual attention and it has been the goal of
many computer vision algorithms to predict or measure saliency

in real images. The most widely used method is the one of
Itti and Koch [16, 18] where an image is analysed at multiple
scales according to colour, luminance, and orientation features;
a biologically plausible architecture proposed by Koch and Ull-
man [2]. Purely computational methods have also been proposed
and at times exhibit a greater accuracy than biologically-inspired
ones [1, 15, 17].

These algorithms have the advantage of being simple to im-
plement and task-independent, but that independence is also their
greatest limitation. In his seminal work on eye tracking and visual
attention, Yarbus noted that observers viewing a painting would
look at very different regions, depending on the task/question
asked [27]. The visual attention map can greatly vary despite the
saliency map being the same, a clear indication that a number of
visual tasks do not follow a bottom-up approach. Predicting vi-
sual attention is significantly harder than saliency, because a new
model has to be built for every task. In photography, one can
however consider frameworks such as memory colour-based re-
gion detection [11] or face detection [25] to be top-down models
addressing the question of identifying regions where a particu-
lar aspect of an image, e.g., colour accuracy, is assessed. Iden-
tifying whether a given task is more likely to be bottom-up or
top-down driven can be challenging as one has to compare the
predicted image saliency with measured observer data, usually by
tracking the observers’ gaze across a set of representative images.
Additionally, the task set to the observers has to be precisely de-
vised, because top-down visual attention results do not generalise
well [23].

Parkhurst et al. [19] found that the Itti and Koch saliency
model [16] could, to a certain degree, predict observers’ gaze
fixation locations. The experiment consisted in four observers
viewing images freely, i.e., without being assigned a specific task,
for five seconds. The images depicted fairly cluttered scenes
(cityscapes, home interiors, fractals). Similar images employed
in a task of memorisation led [9] to conclude that saliency maps
were slightly better than random to predict gaze, but their rel-
evance decreases when more complex tasks were implemented.
The usefulness of salient maps has, however, been disputed for
natural scene analysis. Einhauser [8] shows that natural scene
analysis is a top-down process, and that local contrast on its own
is unimportant: Contrast without context is no predictor. Simi-
larly, Underwood et al. [24] concludes that (bottom-up) saliency
can be relevant but is easily overridden by cognitive influences
once observers do anything else than free viewing, a conclusion
shared in [14] for the task of counting people in images and in [6]
for the detection of print artefacts.

This work focuses on subjective image quality assessment.
The image capturing, rendering, and printing processes, intro-
duce a number of defects and artefacts whose influence on per-
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ceived image quality is not constant. For instance, noise percep-
tion depends on the frequency content of both the noise and the
image, and colour shifts are more easily seen and more disturb-
ing when occurring in the memory colours [4]. A comprehensive
image quality measure has to take these elements into account.
Additionally, people rarely scan an image unless instructed to do
so [27] but only look at specific regions, an attitude reinforced
by the photographer’s rendition of the scene, where local con-
trast, depth of field, colour balance, and composition are used to
guide the onlooker towards a particular portion of the image [5].
It follows that an image defect occurring in a region of “lesser
importance” will be less noticed by observers, and its influence
on the perceived quality of the image will be less significant, as
illustrated in Fig. 1.

Figure 1. The same image defect applied to different parts of the same

image. The difference in image quality is significant, decreasing from “satis-

factory” (4/5) to “unacceptable” (2/5).

While physiological or evolutionary aspects are generally
put forward to explain the varying level of sensitivity of humans to
certain defects, e.g., the contrast sensitivity function threshold or
the once important ability to distinguish sickness from the colour
of a person’s face, large unknowns remain regarding where people
look in an image.

This paper evaluates the performance of state-of-the-art
saliency prediction algorithms when observers are asked to as-
sess an image’s technical quality. A high degree of correlation
between algorithms and observers indicates that people judge an
image based on regions that are not necessarily the most conspic-
uous from an image statistics perspective, while a low correlation
would indicate that technically image quality is, to an extent, in-
dependent from the scene content.

Eye tracking and visual attention map
Measuring visual attention without the use of external de-

vices is challenging as observers do not provide reliable a pos-
teriori information [3, 26], and asking observers where they look
during the viewing experiment would alter the results. A better al-
ternative is to employ an eye-tracking device to record observers’
eye movements during the experiment without interference. An
eye tracker will, however, only output snapshots of an observer’s
gaze sampled at regular intervals, and such a collection of points
is not equivalent to a visual attention map.

Eye movements can be thought of as a succession of fixation
points separated by saccades. To be considered a fixation point,
the eye has to look at a given location for a time exceeding 100ms.
The actual threshold used in the literature actually varies between
100 and 400ms [13]. Fixation points are of particular importance
because it is only during a fixation that information is properly
assimilated. Saccades, on the other hand, are rapid unconscious
eye movements and are categorised either as stationary or travel-

ling saccades, whether they occur around a fixation point to create
surround awareness, or in between two distant fixations. Saccadic
movement is discriminated by its high velocity (≥ 30 degrees/s)
and initial acceleration (3000-8000 degrees/s2). While visual in-
formation resulting from saccades is used at a certain level of the
brain to “fill in the blanks” during rapid eye movement, observers
have neither control nor reminiscence of what has been seen by
the eye during a saccade. Thus, saccade points are often removed
from the raw eye tracking data prior to computing a visual atten-
tion map. We refer the reader to [7] for additional information.

Two other elements of interest when mapping eye tracking
data are fixation duration and scanpath, however, there is no gen-
eral consensus regarding their use in mapping visual attention, as
the usefulness of the information they yield depends on the ex-
periment. The rationale for taking fixation duration into account
is that the longer an observer spends looking at an area of the
image, the more important that area is for the task. A scanpath
refers to the order in which the different parts of the image are
viewed. That sequence contains valuable information when the
task is highly specific -target acquisition, reading, finding differ-
ences between images- [14,16], but in general image viewing, the
scanpath is strongly observer-dependent and is of little value [22].

The sheer number of possible experimental variations im-
plies that there is very little agreement in experimental protocols
in the literature. Our method, detailed in the experimental section
and illustrated in Fig. 2, maps visual attention with conservative
parameters, implicitly takes into account fixation duration but ig-
nores the order in which the different regions are viewed.

Figure 2. Left: The raw eye tracking data; Right: fixation points after pruning

saccades.

We note that many more variables pertaining to eye track-
ing exist, although they are rarely encountered because of their
task-dependency or difficulty to be accurately computed. For a
comprehensive list and description, we point the reader to [20]
and [7].

Experimental Methodology
Twelve observers, nine men and three women aged 25-50,

took part in the experiment. All had normal or corrected to nor-
mal visual acuity and all were experts in imaging, albeit with dif-
ferent specialties. The observers’ gaze was tracked using See-
ingMachines near-infrared video cameras and software, the illu-
mination is provided by an array of high-power, invisible, near-
infrared LEDs. Reliable eye tracking performance was a pre-
requisite for participation in the image quality assessment test.
Two observers, one male one female, had to be discounted be-
cause their glasses (both varyfocal) were only partly transparent to
near-infrared light, decreasing their pupil/iris contrast too much to
allow accurate tracking. A nine-point calibration target was used
to verify the tracker’s accuracy, as recommended by the manufac-
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turer.
The stimuli comprises 20 high-quality colour images dis-

played at a resolution of 1400x932 pixels on a 27 inch IBM 9503-
DG3 screen colour-calibrated to a D50 white point. The screen
native resolution is 1900x1200 pixels and the image is surrounded
with a neutral L∗ = 50 grey boundary for display. The viewing
distance was fixed at 62cm, the screen spanning 30o of viewing
angle horizontally and 22.5o vertically, and a chin rest was placed
to ensure that the distance between the observer and the screen
remains constant during the experiment.

Each image was shown a total of three times to each ob-
server. The 60 total images were displayed in a random order in
six sequences of 10 images. In between each sequence, the nine-
point calibration was performed. If the calibration error is greater
than 3o of subtended visual angle, the entire sequence is discarded
from the results. Each image was displayed for eight seconds, and
a neutral grey background with a centred cross was displayed for
two seconds in between each image. The entire experiment dura-
tion was about 25 minutes.

Observers were given written instruction regarding the ex-
periment and were asked to judge the technical quality of each
image (i.e., taking into account elements such as contrast, sharp-
ness, and colour balance, but discounting elements of composi-
tion or aesthetics) on a scale ranging from 1 (unacceptable, “un-
fixable” artefacts) to 5 (technically perfect image). The observers
were asked to pass their judgment orally after viewing each im-
age and were not made aware that the images being repeated were
identical to the original ones.

A note on the stimuli
Figure 3 shows 18 of the 20 different images used in the ex-

periment. To some extent, exhibiting strong differences between
automatic saliency algorithms and observers-based visual atten-
tion map can be done by selecting images with known bias such
as “captcha” text or people wearing bright colours (the observers
focus on the letters and the faces, while the algorithms mostly
detect the background and the clothing). This typical limitation
of saliency algorithms has been partially addressed in [17] where
face and people detectors are used in addition to low-level cues.
We are, however, interested in the process involved in evaluating
image quality rather than simply criticising saliency algorithms.
As such, we have selected images that are similar to the ones
of [19] and [1], using the categories of “city”, “landscape”, “ani-
mals” and “flowers” so that the results obtained herein can objec-
tively be compared to prior art, instead of simply be attributed to
a difference in stimuli.

Results: visual attention maps and image
quality assessment

Visual attention maps are calculated for each observer-image
pair where the calibration data error was lower than 3o, which
yielded 530 valid observations out of 600.

First, we remove saccadic points from the eye tracking data.
A point is considered a saccade if its velocity is greater than 30o/s,
which for our 60Hz system is equivalent to having no neighbour
inside a 2o radius. Due to the relative low temporal sampling
frequency of the tracker, onset acceleration was not taken into
account as it cannot be reliably computed.

Non-saccadic points are then assessed to determine whether

or not they are fixation points, by filtering the non-saccadic data
with a time window of 200ms (a conservative minimum fixation
time) and a spatial window equivalent to the calibration error.
Non-fixation points are discarded.

The visual map proper is computed by creating an empty
grid of identical size to the image (1400x932 pixels). For every
fixation point, we add a count of one at the corresponding location
in the grid. Once all the fixation points have been addressed, we
convolve the grid with a 1o gaussian (the manufacturer’s stated
precision of the eye tracker) and a function of foveal eccentric-
ity, as measured in [21], to take into account the physiology of
the human visual system. Sample images and their corresponding
visual attention map (averaged over all observations and subse-
quently normalised) are shown in Fig. 4

All observers are experts in the field of photography or image
processing. As such, we expect their judgment on image quality
to be coherent with each other. This assumption is corroborated
by looking the image quality assessment results; there is little
variability across observers. We note that selected test images
were in general of good technical quality, none of them showing
major artefacts such as compression artefacts or noise; their av-
erage score ranges form 2.95 to 4.23 with a standard deviation
between 0.2 and 0.4, see Fig. 5 for details.

Composition, experimental, and observer
bias

A common aspect of all our visual attention maps is the
prominence of the centre as a region of significant attention, see
Fig. 4. This “centre bias” effect has been previously reported
[9,19,22] and has to be taken into account prior to comparing our
visual attention maps to the saliency maps automatically gener-
ated that are designed to be free from bias.

To correctly address this behaviour, we first have to distin-
guish the three plausible causes of such bias: composition, exper-
imental, and observer-based. Composition bias is the tendency
for many of photographers to centre the main subject in the im-
age. Accurately measuring this bias necessitates to analyse a large
number of images, but a couple of studies [10, 12] on a database
of 10,000 images showed that while its influence was not negligi-
ble, centre-surround type of decompositions were not especially
common. We further argue that composition bias, whatever its
influence, should not be removed; if the most salient object hap-
pens to be in the centre, it should be detected by algorithms and
humans alike.

Experimental bias, on the other hand, is unrelated to image
content but directly created by the experimental setup. In our case,
the “cross image” showed in between each stimuli fixates the gaze
of the observers at the centre of the image, potentially biasing the
resulting visual maps. Finally, observer bias has been proposed
in [22] as a natural tendency for people to pay attention at the
centre of the image before selecting an area to look at.

To measure the influence of experimental and observer bias,
we devise an experiment with two identical sets of 10 stimuli im-
ages. For the first set we replicate the original experimental proto-
col, while for the second the “cross image” was altered to appear
in the top-right corner instead of the centre. These two “control
” sets were shown to all observers directly after the six sets of
stimuli. The images were chosen so as not to have any saliency or
point of interest in either the centre or the top-right corner. They
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Figure 3. 18 of the 20 different stimuli sorted according to their ascending scores (best rated image: 4.23/5, worst rated image: 2.96/5). Images courtesy of

Barry Drake, David Morgan-Mar and Scott Rudkin.

Figure 4. Two sample images and their average visual attention maps.

consist in a drawing and some text cast against a uniform and
background blurred (by photographing the scene with an aperture
of f/1.2), such as the ones shown in Fig. 5.

In the visual maps from the control set with a centre cross,
despite no object or saliency being present, significant central vi-
sual attention was observed. The top-right cross control set, how-
ever, exhibit a significant visual attention in the top-right corner,
but none in the centre, see Fig. 6 for an illustration. There is there-
fore no observer-centric bias, and as the images were chosen so
as not to have any central composition bias, we can conclude that
the entire observed bias of the test comes from the experimental
design.

We propose to remove the bias from our test images by cal-
culating the average length of time observers gaze at the loca-
tion of the cross after the image was shown on the screen, also

Figure 5. Average scores and standard deviations of the 18 test images.

Images are all of similar quality, a feature reflected in the compactness of the

scores and the low variations across observers. Error bars are two σ wide.

Figure 6. Sample images used in the bias-measure experiment.

called “dwell time”. Crucially, while the average dwell time was
800ms, the variance across observers was of 300ms, a significant
difference. To be faithful to the data, we opted to remove the ex-
perimental bias on an observer-basis, i.e., calculating the average
dwell time for each observer and discarding it from the test im-
age data. As the average bias time across different images for the
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Figure 7. Average eye tracking data and visual attention map for a central

control image and a top-right control image. While both maps show signif-

icant visual attention where the cross was, the top-right control set has no

central visual attention.

same observer was constant, we surmise that it is a latency issue,
linked to the observer’s reaction time to the presentation of a new
stimulus.

Saliency vs. Visual Attention
In this section, we compare the performance of the visual

attention maps generated by human observers to state-of-the-art
saliency prediction algorithms. Itti and Koch (IK) [16] is the de
facto benchmark of saliency prediction. IK employs low-level
vision cues (intensity, orientation and colour contrast) at vari-
ous scales to identify potential regions of interest. Achanta et
al. (AHES) [1] detects salient regions by calculating the ∆E of
images filtered by two different gaussian kernels. Finally, Judd et
al. (JEDT) [17] constructs a feature vector of both low- and high-
level (face and person detector, composition bias) features and
train an SVM detector on the eye tracking data of 1000 images
freely viewed (i.e., no task was given) by 15 observers (assumed
to be naı̈ve).

For every algorithm, saliency maps are generated using the
code provided by the authors, with default parameters. All maps
are normalised between 0 (no saliency) to 1 (maximum saliency)
to allow a realistic comparison.

The first measure we employ is cross-correlation. For each
one of the 20 images, a ground truth attention map is created by
averaging the attention maps of nine observers (out of 10). Cross-
correlation is then computed between this ground truth and the
tenth observer, IK, AHES, and JEDT. The procedure is repeated
10 times, selecting a different observer in a “leave one out” fash-
ion. The results, Fig. 7, show that human observers exhibit a
much greater correlation to the ground truth than either of the al-
gorithms. Importantly, the correlation between observers is quasi-
constant over the entire image set, while AHES is not significantly
better than random.

In a second test, we compute ROC curves for each of the ob-
servers and algorithms. The ground truth images are the same,
but we binarise it with a threshold corresponding to one stan-
dard deviation of the Gaussian function used to build the attention
maps. True and false positive rates are then calculated for AHES,

Figure 8. Average cross correlation between the ground truth visual at-

tention map and the maps from the observers, IK, AHES, and JEDT. The

correlation between observers is almost independent form the image con-

tent and much higher than either IK, AHES, or JEDT. Error bars represent

two standard deviations.

IK, and the observers by varying their threshold value from 1 (no
salient regions are detected) to 0 (the entire image is considered
salient). The curves are plotted in Fig. 8 where we observe that
the performance of both algorithms is significantly lower than the
observers’.

The relative low performance of prediction algorithms in this
test can partly be attributed to having expert observers judging
technical image quality, while most algorithms are designed with
free viewing by naı̈ve observers in mind. The present experiment,
due to being more specific, is harder to predict using low-level
features. In addition, the similar performance of IK and JEDT
indicate that the effectiveness of high-level features significantly
depends on the task (and data) at hand.

Figure 9. ROC curves for observer data, IK, and AHES, compared to the

ground truth. The observer performance, while not perfect, is significantly

higher than either of the two algorithms.
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Conclusion
Saliency and visual attention are essential to understand and

measure for applications that have a human observer in mind.
Prior art demonstrates that different processes, from bottom-up
saliency to top-down cognitive control, are employed by the hu-
man brain for scene viewing depending on the type of images
being shown and the task an observer has to address.

In this work, we considered the important topic of perceived
image quality, to find out whether judging technical image qual-
ity is stimuli- or cognition-driven. A panel of 10 expert observers
was assembled and visual attention maps were calculated using
standard techniques. Comparing these visual maps to the saliency
maps produced by three state-of-the-art algorithms lead us to con-
clude that bottom-up saliency is not a good predictor of where
observers look when assessing image quality and that free view-
ing gaze fixations are not necessarily similar to the ones obtained
when assessing image quality.

Importantly, the degree of agreement or correlation between
observers does not appear to be image-dependent. However, other
factors can greatly influence the results of such a study, such as the
task given to observers and their level of expertise. Factors that
have to be accurately identified and addressed at the experiment
design stage.
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regions for image classification. IEEE Trans. On Pattern
Analysis and machine Intelligence, pages 1645–1649, 2004.

[13] J.M. Henderson. Human gaze control during real-world
scene perception. TRENDS in Cognitive Sciences, pages
498–504, 2003.

[14] J.M. Henderson, J. R. Brockmole, M. S. Castelhano, and
M. Mack. Visual saliency does not account for eye move-
ments during visual search in real-world scenes. In Eye
Movements: A window on the brain, Gompel, Fischer, Mur-
ray, and Hill Eds, 2007.

[15] X. Hou and L. Zhang. Saliency detection: a spectral residual
approach. In IEEE conf. on Computer Vision and Pattern
Recognition, 2007.

[16] L. Itti and C. Koch. A saliency-based search mechanism for
overt and covert shifts of visual attention. Vision Research,
pages 1489–1506, 2000.

[17] T. judd, K. Ethinger, F. Durand, and A. Torralba. Learning
to predict where humans look. In IEEE International Con-
ference on Computer Vision, 2009.

[18] C. Koch L. Itti and E. Niebur. A model of saliency-based vi-
sual attention for rapid scene analysis. IEEE trans. on Pat-
tern analysis and Machine Intelligence, pages 1254–1259,
1998.

[19] D. Parkhurst, K. Law, and E. Niebur. Modeling the role of
salience in the allocution of overt visual attention. Vision
Research, pages 107–123, 2002.

[20] A. Poole and L. J. Ball. Eye tracking in human-computer
interaction and usability research: current status and future
prospects. In Encyclopedia of human computer Interaction,
C. Ghaoui Editor, 2005.

[21] B. W. Tatler, R. J. Baddeley, and I. D. Gilchrist. Photo-
graphic granularity and graininess iii. Journal of the Optical
Society of America, pages 217–263, 1947.

[22] B. W. Tatler, R. J. Baddeley, and I. D. Gilchrist. Visual cor-
relates of fixation selection: effects of scale and time. Vision
research, pages 643–659, 2005.

[23] G. Underwood and T. Foulsham. Visual saliency and seman-
tic incongruency influence eye movements when inspect-
ing pictures. Quarterly Journal of Experimental Psychology
(Colchester), pages 1931–1949, 2006.

[24] G. Underwood, T. Foulsham, E. van Loon, L. Humphreys,
and J. Bloyce. Eye movements during scene inspection: A
test of the saliency map hypothesis. European Journal of
cognitive Psychology, pages 321–342, 2006.

[25] P. Viola and M. Jones. Robust real-time face detection.
International Journal of Computer Vision, pages 137–154,
2004.

[26] J. Wang, D. Chandler, and P. Le Callet. Quantifying the
relationship between visual salience and visual importance.
In Proc SPIE/IS&T Electronic Imaging vol. 7525, 2010.

[27] Alfred L. Yarbus. Eye movements and Vision. Plenum Press,
1967.

Author Biography
Clément received his M.Sc. from EPFL, Switzerland in 2003

with internships in Fujifilm Japan and Gretag Imaging, and his
Ph.D. from the University of East Anglia, Norwich, U.K. in 2007
on illuminant estimation, shadow detection and removal. From
2007 to 2009 he was a post-doc of the IVRG/LCAV at EPFL
working on novel aspects of near-infrared imaging. He is now
a senior research engineer with Canon Research (CiSRA) in Syd-
ney, Australia. He is a member of the IS & T.

18th Color Imaging Conference Final Program and Proceedings 133




