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Abstract 
 This paper reconsiders the Luther condition from a spectral 
and colorimetric point of view. The projection of spectral to 
colorimetric space is based on matrix R theory. The basis of 
matrix R spans a FCS (Fundamental Color Space).  
The spectral colorimetric design for color sensors is discussed 
based on FCS by clarifying its geometrical structure in relation to 
the orthogonal color matching function and the FCS basis.  
 Since opponent-color model is useful for appearance-based 
color imaging, the paper highlights the opponent FCS with perfect 
orthogonality and introduces a vectorial quality factor Vq for the 
spectral-colorimetric evaluation of digital cameras. The spectral 
response to unit monochromatic stimuli is visualized as a 3-D 
locus that clearly shows the spectral mismatch with Luther 
condition. The measured Vqs are compared with Neugebauer’s 
q-factors and also Vora & Trussell’s -factors.   

Introduction 
The spectral sensitivities of color input devices such as digital 

camera or scanner are required to satisfy Luther condition in order 
to capture the correct tri-stimulus values. 

The following quality measures for color scanning filters have 
been conveniently used to estimate the goodness.  

[1] Neugebauer’s q-factor [1]  
[2] Vora&Trussell’s -factor (generalized q factor) [2] 
[3] Tajima’s weighted q-factor [3] 

Though these factors are helpful for choosing the color filters 
from a colorimetric point of view, the details in the spectral 
mismatch are not always clear. From a point of spectral design in 
RGB camera, Worhtey and Brill analyzed the spectral sensitivity 
errors using LUM (Locus of Unit Monochromats) in FCS 
(Fundamental Color Space).  

Unfortunately, the LUM error is not numerically measured but 
mostly discussed in the standard CIE FCS. From a point of color 
encoding, the FCS based on opponent-color model may be more 
interesting and attractive.    

This paper discusses the spectral LUM responses in an 
orthogonal FCS with perfect opponent-color basis and measures 
the LUM error as a mean squared vectorial loci error. A new 
quality factor, what we call, Vq (Vectorial q-factor) is not a vector 
but a single scalar value reflecting the integrated spectral 
mismatches in the proposed orthogonal opponent-color FCS. The 
spectral mismatches with Luther condition for high-end digital 
cameras are introduced in comparison with q-factors or -factors.   

Fundamental Color Space 
FCS is defined as a color space spanned by the orthogonal 

normalized basis called “matrix-F” derived from the matrix R 
theory by J. B. Cohen [4].  
In HVSS (Human Visual Sub-Space), n-dimensional color vector 

C is decomposed into fundamental C* and metameric black B 
through matrix R as 

CRIB,RC*C,B*CC )( 
       (1) 

I denotes unit matrix and R is the projector onto HVSS (Human 
Visual Sub-Space) derived from CMF A as 

t-1t )( AAAAR         (2) 

A is the n  3 matrix of 1931CIE )()()( λz,λy,λx CMF. 
The marix R is the n × n symmetric matrix whose i-th column 

vector Ei is composed of the fundamental for each single spectrum 
ei at wavelength i. 
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Since the rank of R is 3, it has only 3 independent vectors and the 
remaining n-3 are redundant. We can recreate R by choosing 
arbitrary triplet from the column (row) vectors. The selected triplet 
is called “matrix E” and i=r, g, b show the spectral primaries at 
wavelength r, g, b as follows. 
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Indeed, Fig.1 shows the reconstructed matrix R from the middle 
three entries [E1, E2, E3] at =540,550, and 560 nm. 
The FCS is a color space spanned by a triplet of basis vectors 
called “matrix F”, which is orthonormalized version of matrix E 
using Gram Schmidt method as 
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The symbol vu denotes the inner product of u and v. 
The selection of matrix E is very important to construct 
orthonormal FCS as suggested by Brill, Finlayson, et al [5].  

For example, Burns, Cohen, and Kuznetsov [6] created an 
orthonormal FCS called “R-L-V” choosing the matrix E with 
quasi-orthogonal axes of Red, Luminosity, and Violet (=770, 563, 
and 380 nm) as illustrated in Fig.1. 
Historically, the orthogonal CMF was firstly proposed by 
MacAdam [7] and also may be used as a matrix E. Though the 
classical Guth’s opponent CMF was not orthogonal in original, it 
was recently orthonornalized by Worthey et al [8] and used for 
evaluating spectral responses for digital camera. Kotera [9] 
reported that these CMFs span orthonormal FCSs close to R-L-V 
but slightly different one another as illustrated in Fig.2. 
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Figure 1 Construction of FCS  

 

Figure 2 Typical basis matrix F and its FCS 

Orthonormal Opponent FCS 

Spectral Decomposition of Fundamentals 
Setting the basis F2 to an achromatic fundamental and (F1, F3) 

to arbitrary orthogonal chromatic fundamentals in matrix F, the 
matrix R is decomposed [4] as  
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RA and RC are the orthogonal projectors to decompose the basic 
fundamental metamer C* into the achromatic and the chromatic 
fundamentals CA* and CC* as 
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When the chromatic projector RC is orthogonal to the achromatic 
projector RA, the inner product between them should be zero as  

0 CA RR
        (8)  

Indeed, the matrix F in “R-L-V” FCS is composed of orthonormal 
basis functions with achromatic luminousity axis and satisfies the 
condition of Eq. (8). As well, FCSs derived from CMF by 
MacAdam or Guth also satisfy the same condition. 

Orthonormal Opponent FCS 
As well known, Luminance/Chrominance color models with 

opponent-color axes assigned to “Red-Green (R-G)” and 
“Yellow-Blue (Y-B)” have been widely used for color imaging, 
analysis, and picture coding. YIQ used in NTSC Television is a 
opponent-color system by a simple linear transformation from XYZ. 
CIELAB is a most popular uniform color space mapped on the 
R-G and Y-B Cartesian opponent-color coordinates. Hence, a 
foundation of FCS with orthogonal and opponent-color structure is 
a lot of fun in practical use. 

The chromatic projector RC is further decomposed into two 
opponent-color components RR and RB by choosing an appropriate 
pair of (F1, F3). Thus, the chromatic fundamental CC* is 
decomposed into two opponent-color fundamentals CR* and CB* 
corresponding to R-G and Y-B hue axes as follows. 
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To be perfectly opponent for CR* and CB*, it is desirable that the 
projectors RR and RB satisfy the following zero-sum conditions. 
That means the gray input with flat spectrum should be achromatic 
without any red-green or yellow-blue components.  
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Although the matrix F in “R-L-V” FCS surely satisfies the 
orthonormal condition in Eq. (5) and the orthogonality between 
achromatic and chromatic components in Eq. (8), the zero-sum 
condition in Eq. (11) didn’t hold good, and MacAdam’s or Guth’s 
FCSs as well. 

In the “R-L-V” FCS, the fundamental of g =563 nm single 
spectrum is selected as the vector E2 to reflect the Luminosity, but 
E2 doesn’t exactly mean the luminance which is defined as a linear 
mixture of R, G, B components.  

Since the entry of matrix E may be any linear combination of 
arbitrary column vectors {Ei}; i=1~n, for instance, the second 
vector E2 may be given by the weighted sum of {Ei} by illuminant 
D65 that means the fundamental of D65 itself. 
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The zero sum condition can be obtained by replacing the vector E2 
with the fundamental of white illuminant such as EE (Equal- 
Energy) or D65. Since EE is not popular in practice, D65 is 
recommended as most widely used. Thus “R-D65-V” FCS is 
created by introducing the fundamental of D65 into vector E2 in 
Eq. (12) and a getting the matrix F by GramSchmidt. Now 
“R-D65-V” becomes a perfect opponent-color FCS with zero sum 
condition [10]. 

 

 
Figure 3 Opponency tests for FCS by decomposition of matrx R 

Fig.3 summarizes how the matrix R is decomposed into the 
achromatic RA and chromatic RC components and further into the 
opponent-color matrices RR and RB. The upper half is the 
decomposition for “R-L-V” and the lower half is for the 
“R-D65-V” FCS. Although RA and RC are orthogonal each other in 
both models, the zero-sum conditions in the matrix RB, hence RC 
don’t hold good for “R-L-V”, while they are almost maintained in 
the “R-D65-V” with the negligible small errors. The zero-sum 
condition in Yellow-Blue fundamental matrix RB is the definitive 
difference between them. That is, “R-L-V” is imperfect but 
“R-D65-V” is one of the perfect orthogonal opponent-color FCS.  

Quality Measure of Color Scanning Filter 

q-factor 
Neugebauer’s q-factor has been easily used for estimating the 

goodness of RGB color scanning filters. It’s convenient for 
measuring the RGB channel errors independently.   

Letting the spectral sensitivity in R, G, and B channel be 
SCam=[SR( ), SG( ), SB( )], the q-factor is given by 
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Where, AOrt denotes an orthogonal CIE CMF and qj simply means 
the power of cosine between the j=R, G, B spectral sensitivity 
vector and the corresponding CMF, taking the value of 0 ≤ qj ≤ 1. 
If the Sj() is a linear transform of CMF, the Luther condition is 
perfectly satisfied with qj=1. 

Though Neugebauer used MacAdam’s orthogonal CMF as Aort, 
this paper applied the orthonormalized standard CIE1931CMF by 
GramSchmidt. 

Camera FCS by Matrix RCam 
The device FCS such as digital camera is structured from the 
camera matrix RCam corresponding to matrix R by just replacing 
the CMF A with camera sensitivity SCam as 

t
Cam

-1
Cam

t
CamCamCam SSSSR )(      (14) 

Now the deviation from the Luther condition is measured by the 
difference between matrices RCam and matrix R.  

Since a linear transformation of CMF also belongs to the 
family of CMFs, a linear matrix operation for camera sensitivity 
SCam may be allowed without affecting the Luther condition. 
Hence the basis matrix FCam of camera FCS is derived from the 
following two steps. 

[Step1] Get best fit camera sensitivity to CIE CMF 

Least Squares’ method 
The linear transformation matrix MFit for getting the camera 

sensitivity SFit closest to CIE.CMF A is obtained by the method of 
least squares as  
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Fit First method 
According to “Fit First” method [13] by Worthey and Brill, 

the same SFit is obtained by operating the camera matrix RCam 
directly on A like as  

 ASSSSARS t
Cam

-1
Cam

t
CamCamCamFit )(     (16) 

It’s easy to prove that Eq. (15) equals Eq. (16).  

[Step2] Get basis Matrix F for camera FCS 
Next, we get the camera basis matrix FCam by orthonormaliz 

-ing SFit with Gram Schmidt process as  

 FitCam tGramSchmid SF        (17) 

Now the camera FCS is spanned by the triplet basis of FCam. 

-factor in relation to Camera FCS 
Neugebauer’s q-factor is surely useful for judging the 

goodness of individual color filter independently but not for 
estimating a set of RGB in total. Hence -factor is proposed as a 
generalized q-factor extended to measure the total goodness for a 
set of multi-channels more than three.  

The -factor is simply described as a deviation between the 
matrices R and RCam, in the sense of squared error of directional 
cosine between the projection matrices as 

 ][)( RSS,R Trace       (18) 

Assuming the spectral inputs are independent random 
variables, it’s simply reduced to the average of q-factors as   
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Where denotes the rank of matrix RCam (=3) and means the 
number of color channels (=3 for normal RGB camera).

Vectorial q-factor 
In the past papers [11] [12], the colorimetric error for color 

scanner is evaluated as a spectral loci error using a virtual spectral 
target composed of Sine SPDs.  

Recently, Worthey and Brill [13] advanced the same concept 
in the elegant manner by visualizing the LUM error in FCS. This 
clarified the defect in the spectral sensitivity design but missed to 
give the numerical measure unfortunately. 

The error in camera LUM from HVSS is easily measured by 
the average spectral deviation, what we call, vectorial q-factor as      
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Estimation Results in Digital Camera 
In practice, the spectral goodness is estimated for four 

commercial high-end digital cameras. 

 Evaluation in orthonormal standard CIE FCS  
First the LUM errors between camera and human vision are 

estimated using the standard orthonormal CIE FCS as summarized 
in Fig.4. The numerical Vq values are listed in Table.1 in 

comparison with q-factors and -factors. The camera LUMs are 
obtained starting from the measured spectral sensitivity SCam, 
calculating the best fit sensitivity SFit,, and converting to the basis 
matrix FCam. 

Evaluation in orthonormal opponent-color FCS  
As well, the same estimation is performed using R-D65-V 

orthonormal opponent-color FCS as shown in Fig.5. The results 
are little different from Fig.4.  

The Vq values in opponent-color FCS show the severe 
assessment rather than in the orthonormal CIE FCS as listed in the 
last row in Table.1.  

All of q,  factors and Vq tell that camera C is the best and 
camera M is the worst. However the camera N-1 and N-2 (same 
maker) marked somewhat different scores in Vq from the 
conventional q or factors. The more detailed analysis is necessary 
but left behind as a future work. 

Conclusions 
The paper reconsidered the Luther condition from a spectral 

and colorimetric point of view. Recently a new concept of spectral 
colorimetry has been oriented to design the better multi-band 
camera incompatible with colorimetric and spectral reproduction.  

The key point of proposed approach lies in the use of 
opponent-color FCS with zero-sum conditions, that means 
[1]Colorimetrically: Luther condition corresponds to the 

fundamental based on the matrix R theory of human vision 
[2]Spectrally: the opponent-color FCS is based on the spectral 

decomposition of chromatic fundamental with the perfect 
opponent-color axes that reflect the LUM error spectrally 
important to color appearance in relation to the camera design. 

Furthermore, it’s desirable to discuss the device metamerism from 
a point of spectral imaging. The FCS based approach to this 
problem is also left behind as a future work.  

References 
1. H. E. Neugebauer, J. Opt. Soc. Am.,46(10), 821-824 (1956) 
2. P. L. Vora and H. J. Trussell, J. Opt. Soc. Am.,A10(7),  

1499-1508 (1993) 
3. J. Tajima, Proc. CIC4, 25-28 (1996) 
4. J. B. Cohen, “Visual Color and Color Mixture”, Illinois    

Press (2001) 
5. M. H. Brill et al, Proc. CIC6, 33-42. (1998) 
6. S. A. Burns et al, Col. Res. Appl., 15, 1, 29-51. (1990) 
7. D. L. MacAdam: J. O. S. A., 27, 8, 294 (1937) 
8. J. A. Worthey, Proc. CIC12, 327 (2004) 
9. H. Kotera: Proc. AIC2007, 130-133 (2007) 
10. H. Kotera: Proc. CGIV2008, 585-590 (2008)  
11. H. Kotera: Jour. SID, 6/4, 299-305 (1998) 
12. H. Kotera et al, Proc. CIC7, 36-41 (1999) 
13. J. A. Worthey and M. H. Brill, Proc. CIC14, 185-190 (2006) 

Author Biography 
Hiroaki Kotera joined Panasonic Co., in 1963. He received Doctorate 
from Univ. of Tokyo. After worked in image processing at Matsushita Res. 
Inst. Tokyo during 1973-1996, he was a professor at Dept. Information 
and Image Sciences, Chiba University until his retirement in 2006. He 
received 1993 journal award from IS&T, 1995 Johann Gutenberg prize 
 from SID, 2005 Chester Sall award from IEEE, 2006 journal award from 
ISJ and 2008 journal award from SPSTJ. He is a Fellow of IS&T. 

112 ©2010 Society for Imaging Science and Technology



 

 

 
Figure 4 Results in spectral errors for digital cameras estimated in orthonormal standard CIE FCS   

 
Figure 5 Results in spectral errors for digital cameras estimated in R-D65-V opponent-color FCS  
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Table 1 Measured quatity factors for digital cameras 

Cameras
measures

M N-1 N-2 C

q-factor

q-Red 0.839 0.868 0.867 0.955

q-Green 0.953 0.953 0.927 0.932

q-Blue 0.920 0.900 0.914 0.944

-factor 0.904 0.907 0.902 0.944

Vectrial
Vq

Orthonormal
CIE FCS 0.909 0.929 0.920 0.940

Opponent-color
R-D65-V FCS 0.869 0.890 0.888 0.927
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