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Abstract 
Noise is one fundamental quality attribute in digital cameras. 

Traditionally, noise has been measured from solid patches of 

artificial test targets. In image quality research, it has been 

difficult to find connections between a test target and subjective 

test data. In addition, image quality algorithms computed from 

natural images are not well correlated. In this paper, we propose a 

novel approach for measuring color noise from natural images. 

With the proposed method, the suitable surfaces for noise 

calculations are located from the scene using a reference camera 

image. It is now possible to use the same image files for subjective 

and objective measurements and correlations are easier to find. 

The results show that the method is promising. Its performance 

was better for predicting subjective noise compared to the visual 

noise metric that is the state-of-the-art test target method for 

digital cameras. 

Introduction 
Digital cameras produce different noise types in images. For 

example, noise can be high-frequency achromatic noise, low-

frequency red-green or yellow-blue color noise or a combination of 

both. In this study, a new method to measure and characterize 

color noise directly from a natural image is described. The 

proposed method is based on a reference camera. The reference 

camera shoots a natural scene, and the appropriate areas are 

identified from the image for measurement purposes. The method 

has been developed for camera benchmarking studies. The method 

requires that the images of the reference camera and the cameras to 

be benchmarked are produced from the same scene. 

The study of color noise in the literature can be divided in two 

distinct areas. In the first area, the goal is to describe the noise 

model and weighting factors of its chrominance components. In 

these studies, noise level has often been measured from solid 

patches of specific test targets. For example, Kuang et al. [2] fit the 

parameters of the noise model based on empirical data. They also 

implemented a function incorporated in the noise model that 

described the effect of luminance level. In another study, Kelly and 

Keelan [3] described new weighting factors of the chrominance 

component for the signal-to-noise ratio calculation. 

In the second area of color noise study, the goal is to find the 

noise level or noisy areas from natural images for noise reduction 

purposes. Gheorghe et al. [5] proposed a method to reduce color 

noise from a natural image. Their method was based on a hybrid 

multi-scale spatial dual tree adaptive wavelet filter in hue-

saturation-value color space. Lee [4] proposed a method to detect 

color noise areas from natural images. His method was based on 

correlation between the R/G/B color channels. In addition, a noise 

metric for luminance channel has been proposed [10]. These 

methods are based on the no-reference (NR) approach. The 

measurements are performed without the original noiseless images. 

The problem with using NR methods with digital cameras is that 

these methods are often sensitive to other image distortions. For 

example, NR noise metrics can interpret image details as noise 

energy. In addition, NR metrics are often highly image-content 

specific. 

The proposed method differs from the earlier methods 

discussed in the literature. The method is based on the reduced-

reference (RR) approach. It utilizes information from a reference 

image, but it does not need a pixel-wise equivalence as the full-

reference (FR) approach does. Pixel-wise comparison is not even 

possible when digital cameras are benchmarked. When images are 

produced from a given scene using different digital cameras, there 

is always rotation, scaling and 3D-projection between the images. 

We can find an analogy between the test target method and 

the proposed method. With the test target method the properties of 

the solid patches are known. With the proposed method, the 

suitable areas are located for measurements from the scene using a 

reference camera image. The selection is based on distortion. In 

this study, we describe how surfaces for noise calculations can be 

selected. In addition, we show how noise type can be characterized 

and noise level can be measured from these surfaces. 

The benefit of the proposed method compared to test target 

methods is that the same images can be used for subjective and 

objective measurements. It has been difficult to find correlations 

between test target computations and subjective test data such as 

MOS using conventional image quality research methods. We 

believe that these relationships are easier to find if both 

measurements are made using the same natural images. Compared 

to NR methods, the benefit of the proposed method is that at least 

some features from the reference (noiseless) image and scene are 

known. With these features, the problems related to the other 

image distortions and image content can be avoided. 

Method 
The proposed method is based on blocks that are located from 

the scene using a reference camera image. The block selection is 

based on three features: chromatic energy, achromatic energy and 

brightness of the block. The chromatic energy of the blocks should 

be low. The blocks can have achromatic structural energy, but this 

structure should be composed more of random texture than edges. 

There are two reasons why random texture in a scene can be 

beneficial for noise measurements. The first reason is that 

achromatic texture-like surfaces in scenes are sensitive to color 

noise in digital camera images. The second and more important 

reason is that texture-like surfaces present challenges for noise 

reduction algorithms in cameras. If the structure is edge-like, then 

a noise reduction method can easily filter the noise away from the 

neighboring smooth area of the edges. If the structure is a random 
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texture, then it is difficult to separate the noise energy from the 

image structure energy using computational methods. 

In addition, the intensity of the selected blocks should not be 

too low or too high. If a block is too bright, then it becomes 

saturated for images produced by low-end cameras. If the block is 

too dark, then it is possible that a low-end camera does not detect 

its structure energy and that the camera image processing software 

applies strong noise reduction to it. 

The method was applied in the YCbCr space. With opponent 

color space, it is possible to separate achromatic information from 

chromatic information. The method operates on the principle that 

the control blocks are initially symmetrically located on reference 

image (Figure 1a). The method searches for new locations for the 

blocks on the limited neighborhood in Cb and Cr channels by 

maximizing the homogeneous metric value. Figure 1b shows the 

blocks that are located on the new places for the Cb channel. The 

homogeneous metric used was the co-occurrence matrix energy 

feature COE of the blocks calculated by Equation (1): 
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where Pφ,d(a,b) describes the probability that two pixels with 

intensity levels a,b appear in the window separated by a distance d 

in direction φ [1]. Feature COE gets a higher value in scale 0 - 1 if 

the block is homogenous. The homogenous metric was calculated 

as an average of directions in the 0, 45 and 90 degrees. In this 

study, the distance d was 30 pixels. The image size was 1600 x 

1200 pixels and the block size was 100 x 100 pixels in all cases. 

The limited neighborhood area used for minimizing block 

homogenous values was 120 pixels for all directions measured 

from original block center point to the new block center point. 

Next the energy values of the Y channel were calculated for 

homogenous blocks. The used energy metric was the co-

occurrence matrix inverse difference moment feature COIDM of the 

blocks calculated by Equation (2): 
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where constants λ and κ were set to 1 and 2 [1]. The metric was 

calculated as an average of directions in the 0, 45 and 90 degrees. 

In this study, the distance d was 10 pixels. Feature COIDM gets a 

higher value in scale 0 - 1 if the block pixel intensity values are 

close to each other. This means that if the COIDM value is small the 

intensity structure in the block is more texture like than smooth. 

The brightness value was calculated in addition to the homogenous 

and energy values. The brightness value was the mean intensity of 

the Y channel. COE and COIDM co-occurrence features were 

chosen because they are well-known and widely used texture 

descriptions. 

In this study, six blocks were selected as candidate blocks for 

color noise calculation based on the COE values. The blocks with 

the lowest and highest COIDM values from the six candidate blocks 

with brightness values between 100 and 200 levels were then 

selected for the analyses. 

Once the blocks have been selected from the scene for 

analysis, corresponding blocks should be searched from images 

produced by the cameras to be benchmarked. With camera images, 

there are differences in features such as rotation, scaling, 3D-

projection and brightness. Noise levels and types also naturally 

differ. We expect that correspondence block searching using only 

pixel coordinates in images is not precise enough. We also expect 

that searching using the block correlation method lacks the 

necessary precision. The proposed method applies the popular 

SIFT method (Scale Invariant Feature Transform) developed for 

object recognition [7]. SIFT-based methods are invariant to 

scaling, translation and rotation. In addition, it is partially invariant 

to brightness changes and 3D-projection. 

 

 
(a) 

 
(b) 
Figure 1.  Reference image with blocks in predetermined symmetric order (a), 

Reference image with blocks when homogeneous metric was maximized for 

the Cb channel (b). 

The method finally calculates noise values from the blocks 

located and cropped from the distorted images. Noise type was 

characterized using power spectra and noise level was measured 

using wavelet transformation. Power spectra were calculated as 

rotational average of intensities after discrete Fourier transform. 

For measuring the visually perceived noise level, the metric 

should use different weighting factors for achromatic and 

chromatic noises. The spatial frequency of noise energy should 

also be taken into account. For example, Johnson and Fairchild [6] 

studied the effect of frequency and noise color channel on image 

quality. This empirical study showed that the distracting level 

depended on the noise frequency, and it resembles the human 

visual contrast sensitivity. For example, luminance noise was more 

distracting at higher frequencies than chrominance noise. 

The noise model used in this study combines both achromatic 

and chromatic components of noise linearly as follows: 

crcby ckckckN 321 ++=  (3) 
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where ki are weighting factors and cy, ccb and ccr are mean standard 

deviations of the vertical, horizontal and diagonal wavelet 

coefficients for the blocks. The achromatic noise energy was 

calculated using higher frequencies than those for chrominance 

noise. Wavelet coefficients for chrominance channels were 

calculated from the second scale and for achromatic channels from 

the first scale of wavelet decomposition. Wavelet decomposition 

was done by the Matlab wavelet toolbox using Haar wavelets. 

Figure 2 shows image decomposition and scales and orientations 

from where noise energy is extracted for different components of 

the noise model. 

 

 
Figure 2. Noise model uses first scale coefficients for achromatic Y 

component and second scale coefficients for chromatic Cb and Cr 

components (wavelet coefficients are scaled for visualization purposes) 

The next section describes how noise values are calculated 

from the images produced by 13 cameras. Twelve cameras were 

mobile phone cameras, and one was a digital still camera. The 

scene structure used in the study was a normal portrait under a low 

illumination level. The illumination level was 100 lux, and the 

color temperature was 2800 K. These values equal the values of a 

living room environment. Table 1 lists the indices and pixel count 

of the cameras benchmarked. The reference camera was Canon 5D 

with Canon EF 24-70/2.8 L USM lens. Image processing of the 

reference image was done by Canon Digital Photo Professional 

software. The cameras to be benchmarked were set to the 

automatic mode.  

 

 

 

 

 

 

 

Table 1. Indices and pixel counts of cameras used in the study 

Camera index Camera type Mpix 

ref SLR 12.00 

1-3 mobile 3.10 

4 mobile 4.90 

5-9 mobile 5.00 

10 mobile 8.00 

11-12 mobile 12.00 

13 DSC 10.00 

Block selection for noise metric 
Figure 1a shows the reference image with blocks in 

predetermined symmetric order. Figure 1b shows the new locations 

of the blocks after the homogeneous metric was maximized for the 

Cb channel. Figure 3a shows the six most homogenous blocks in 

the Cb channel, and Figure 3b shows the six most homogenous 

blocks in the Cr channel. The six most homogenous blocks are 

indexed in Figures for analysis purposes. 

 

 
(a) 

 
(b) 
Figure 3. Reference image with the six most homogeneous blocks in the Cb 

(a) and in the Cr (b) channels. 

Table 2 lists the values of the COE and COIDM features and 

brightness for the six most homogenous blocks in the Cb and Cr 

channels. The blocks that we selected for noise measurements had 

low or high achromatic energy. With high achromatic energy 

blocks (low COIDM value), we wanted to study color noise in the 

texture region. With low achromatic energy blocks (high COIDM 

value), we wanted to study color noise in the smooth region. 

Another constraint is that the brightness of the block should be in 

the 100 – 200 scale. Based on these criteria, blocks 2 and 5 were 
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selected from both the Cb and Cr channels for subsequent 

analyses. In both channels, the values of the COIDM feature were 

the highest in block 2 and the lowest in block 5 for brightness 

values between 100 and 200. 

Table 2. Characterization values for the six most homogeneous 

blocks of the Cb and Cr channels (selected blocks marked in 

bold) 

  Cb channel Cr channel 

Block 

number 

COIDM 

(Y) 

COE 

(Cb) 

Brightness 

(Y) 

COIDM 

(Y) 

COE 

(Cr) 

Brightness 

(Y) 

1 0.637 0.968 210 0.665 0.994 210 

2 0.564 0.217 199 0.371 0.538 194 

3 0.366 0.696 194 0.173 0.383 183 

4 0.592 0.262 201 0.172 0.382 182 

5 0.117 0.301 174 0.113 0.462 174 

6 0.129 0.294 55 0.117 0.469 172 

 

The corresponding blocks of the reference and distorted 

images were searched for using the SIFT algorithm [8]. The SIFT 

algorithm was applied so that the 10 nearest correspondence 

features of blocks in the reference image were used for 

correspondence block searching in the distorted images. The block 

center in the distorted image was located by calculating the angle 

and length information of the vectors between the block center and 

features in reference image. Figure 4 shows an example where 10 

correspondence features near Block 5 are used for the 

correspondence block search in a distorted image. The block center 

in the distorted image is the average of the vector end-points from 

the correspondence features. 

 

 
Figure 4. Correspondence features (circles) between the reference image 

(left) and distorted image (right) are located using the SIFT algorithm. 

Correspondence block centers (crosses) are located for distorted images 

using average end-point values of vectors derived from reference image. 

Method validation 
We used subjective data to confirm that the proposed method 

is suitable for measuring color noise of natural images captured by 

digital cameras. The data set utilized in this study is a portion of a 

large-scale subjective test set. University students were used as 

observers (n=25). They were all naïve regarding image quality. 

The test images were scaled to a 1600 x 1200 pixel size. In 

addition, black borders were added to images to reconcile image 

file resolution to the display resolution (1920 x 1200). The test 

setup included two Eizo ColorEdge CG241W displays. The test 

image was shown on one display, and a high quality reference 

image was shown on the other. The observers evaluated picture 

graininess level on a 0 to 100 scale, where 0 was the worst and 100 

was the best score. 

The prediction accuracy of the proposed metric was compared 

to the visual noise metric [9]. The visual noise is a state of the art 

test target metric. In this study, the visual noise was measured 

using the neutral patches of the Gretag Macbeth test target. The 

illuminance of the test target was 100 lux, and the color 

temperature was 3200 K. Parameters for the visual noise was set 

for the subjective test environment: 100 % view on display, 0.8 m 

viewing distance and 94 ppi resolution. We used IE Analyzer 

v4.0.5 software for calculations, and reported values were an 

average of 10 images. The proposed metric was calculated from a 

single image that was also used in the subjective tests. 

Characterization Results 
One novel feature of the proposed method is the possibility of 

characterizing color noise of achromatic texture regions. Table 3 

shows intensity distributions of the RGB, Cb and Cr channels of 

texture regions (Block 5) from Cameras 1 – 13 and the reference 

camera. The intensity of the Cb and Cr block images is scaled for 

visualization purposes. The Cb and Cr blocks of the reference 

camera are smooth, but there is a texture-like intensity structure in 

the achromatic channel. However, the Cb and Cr blocks of 

distorted cameras have intensity distributions at different 

frequencies. Power spectra were used next to characterize the color 

noise types. 

Figure 5 shows the power spectra of the Cb channel for 

Cameras 1 – 3. Figure 6 shows the power spectra of the Cr channel 

for Cameras 4 – 9. The power spectrum of the reference camera is 

shown in both Figures 5 and 6. Cameras 1 – 3 are low-end 

products, and Cameras 4 – 9 are moderate-level products. Figure 5 

shows that Camera 1 produces less noise in the Cb channel than 

Cameras 2 and 3. The power spectrum of Camera 1 is closer to the 

reference camera than the power spectra of Cameras 2 and 3. 

However, a visual inspection shows that the noise energy of 

Camera 1 is not random (see Table 3). The power spectrum values 

come from the color blotches. Color blotches can be visually more 

distracting than random Gaussian type noise. Figure 6 indicates 

that the noise level of Camera 9 was low compared to the other 

cameras. The noise level for Camera 4 was also low.  

Figure 7 compares noise types between Cameras 8 and 12. 

Camera 8 produces strong noise in the Cb channel compared to the 

Cr channel. The Cb channel power spectrum has a peak in the 

medium frequency area. Camera 12 produces high frequency noise 

energy for both channels.  
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Table 3. Intensity distribution for the texture blocks  

Camera RGB Cb Cr 

Ref 

   
1 

   
2 

   

3 

   

4 

   

5 

   

6 

   

7 

   

8 

   

9 

   

10 

   

11 

   

12 

   

13 

   

 

 
Figure 5. Power spectrum of block 5 for Cameras 1 – 3 in the Cb channel. 

 
Figure 6. Power spectrum of block 5 for Cameras 4 – 9 in the Cr channel. 

 
Figure 7. Power spectra for Cameras 8 and 12 in the Cb and Cr channels. 

Prediction Results 
Power spectra can provide valuable information about noise 

properties. However, power spectra do not give a single number 

for noise level related to the perceived image quality. Instead, we 

used the noise model expressed in Equation (3) to measure the 

noise level of benchmarked cameras. The metric values were 

calculated for blocks 2 and 5. Block 2 of the Cb and Cr channels 

were used for smooth area noise component, and block 5 was used 

for texture area noise component. Total noise was calculated as the 

sum of both blocks. Single component values were always 

normalized before summation because of the scale differences 

between components. 

The noise model in Equation (3) includes weighting factors 

for chromatic and achromatic components that should be specified. 

In this study factors were specified based on the empirical data. 

Weighting factors k2 and k3 for chromatic components were set to 

5. Weighting factor for achromatic component was set to 1 for 

block 2 and 0 for block 5. The weighting factor of 0 was selected 

for block 5 because the block in the reference image had 
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achromatic structure energy. This factor made it possible to avoid 

interpreting the structure energy as noise energy. 

Figures 8 and 9 show scatter plots for the proposed total noise 

metric and visual noise test target metric. Linear and rank ordered 

correlation coefficients between subjective and objective data are 

shown in Table 4. The results demonstrate that the proposed 

method is a promising approach for the measurement of visually 

perceived noise levels from natural images. The performance of 

the texture noise component was only moderate, but performances 

of the smooth area component and total noise were rather high. 

The scatter plot of the visual noise includes two or three clear 

outliers that decrease the linear correlation coefficient. However, 

the rank ordered correlation coefficient of visual noise was higher. 

The scatter plot of the total noise includes one clear outlier. 

Prediction of the total noise level was too low for Camera 1. The 

noise energy of Camera 1 was not random, but more like color 

blotches that are visually distracting. The proposed noise metric 

needs to be fine-tuned to find and handle these types of 

distractions. 

Conclusions 
The proposed method is a promising approach to color noise 

characterization. This study shows that the proposed method is 

better than test target methods when the reasons behind the 

subjective studies are analyzed because now both subjective and 

objective measurements can be done from same natural images. 

The proposed method is better than NR methods because it takes 

into account image content and other types of image distortion for 

calculations. 

Future efforts should be directed at further developing the 

method. For example, this study utilized constant block sizes for 

noise analysis. The block size could vary based on the energy 

structure and properties of the neighborhood. 

Only one scene was used for the analyses in this study. The 

method should be applied for different scenes. The scene-specific 

threshold values of structural energy or brightness for blocks 

should be studied in future work. 

Table 4. Linear correlation and rank ordered correlation 

coefficients between subjective noise and objective metrics 

Metric Linear 

correlation, LCC 

Rank ordered 

correlation, ROCC 

Proposed texture -0.635 -0.676 

Proposed smooth  -0.837 -0.775 

Proposed total -0.800 -0.786 

Visual noise -0.471 -0.709 

 

 
Figure 8. Total noise as a function of subjective noise. 

 
 Figure 9. Visual noise as a function of subjective noise. 
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