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Abstract
Image quality assessment is a difficult and complex task due

to its subjectivity and dimensionality. Attempts have been made

to make image quality assessment more objective, such as the in-

troduction of image quality metrics. However, it has been proven

difficult to create an image quality metric correlated with per-

ceived overall image quality. Because of this, and to reduce the

dimensionality, quality attributes have been proposed to help link-

ing subjective and objective image quality.

Recently, Pedersen et al. (CIC, 2009) proposed a set of

meaningful quality attributes for the evaluation of color prints

with the intention of being used with image quality metrics. In

this paper we evaluate image quality metrics for the quality at-

tributes, and propose a set of suitable image quality metrics for

each attribute. The experimental results indicate that the Struc-

tural SIMilarity index (SSIM) by Wang et al. (2004) is the most

suitable metric for measuring the sharpness quality attribute. For

the other quality attributes the results are not as conclusive.

Introduction
The printing industry is continuously moving forward as new

products are introduced to the market. These products are be-

coming more and more affordable, and the technology is con-

stantly improved. The need to assess the quality is also increased,

for example to verify that new technology advancements produce

higher quality prints than the current technology.

There are two main methods to assess Image Quality (IQ),

subjective and objective. Subjective assessment is carried out by

human observers. Objective assessment does not involve human

observers, but rather measurement devices to obtain numerical

values, or alternatively IQ metrics. These IQ metrics are usually

developed to take into account the human visual system, and thus

with the goal of being correlated with subjective assessment.

Numerous IQ metrics have been proposed [1], but so far no

one has succeeded proposing an IQ metric fully correlated with

subjective IQ [2–5]. Mostly because IQ is multi-dimensional

and very complex. To reduce the complexity and dimensional-

ity, Quality Attributes (QAs) have been used in the assessment of

IQ. These QAs are terms of perception [6], such as sharpness and

saturation. In earlier papers [7, 8] we proposed a set of six QAs

for the evaluation of color prints:

• Color contains aspects, such as hue, saturation, and color

rendition, except lightness.

• Lightness will range from ”light” to ”dark”.

• Contrast can be described as the perceived magnitude of vi-

sually meaningful differences, global and local, in lightness

and chromaticity, within the image.

• Sharpness is related to the clarity of details and definition

of edges.

• Artifacts, like noise, contouring, and banding, contribute to

degrading the quality of an image if detectable.

• The physical QA contains all physical parameters that affect

quality, such as paper properties and gloss.

These QAs are referred to as the Color Printing Quality At-

tributes (CPQAs). We have created the CPQAs to help establish-

ing a link between subjective and objective evaluation.

Our long term goal is to evaluate quality without involving

human observers. In order to achieve this, with the starting point

of CPQAs, we need to identify IQ metrics able to correctly mea-

sure each CPQA. Therefore, in this paper we investigate and eval-

uate IQ metrics in the context of CPQAs, with the goal of propos-

ing suitable metrics for each of the CPQAs.

To achieve our goal the first step is to identify relevant IQ

metrics for each of the CPQAs. Then an experiment is set up

to evaluate each of the CPQAs, where both naive and expert ob-

servers are included to assure an extensive evaluation. Later, the

results from the relevant metrics identified in the first step are

compared against the results of the two observer groups. This

enables us to refine the selection of IQ metrics for each CPQA,

and to recommend a suitable set of IQ metrics able to measure

each of the CPQAs.

This paper is organized as follows: First we select the rel-

evant metrics for the different CPQAs. Then the experimental

setup is explained, and the printed images are prepared for the IQ

metrics. We then evaluate the metrics before we conclude and

propose future work.

Selection of Image Quality Metrics for the Color
Printing Quality Attributes

Numerous IQ metrics have been proposed in the litera-

ture [1], and we have selected a sub-set of these, as shown in

Table 1. The selection is based on the results from previous eval-

uation [2–4], the criteria on which the metrics were created, and

their popularity. Since many of the IQ metrics are not created

to evaluate all aspects of IQ, only the suitable metrics for each

CPQA will be evaluated.

Furthermore, for specific CPQAs we also evaluate parts of

the metrics. For example, S-CIELAB combines the lightness and

color differences to obtain an overall value. When suitable, we

will evaluate these separately in addition to the full metric.

Experimental setup
In this paper, two experimental phases were carried out. In

the first phase, 15 naive observers judged overall quality and the

different CPQAs on a set of images. In the second phase, four ex-

pert observers judged the quality of a set of images and elaborated

on different quality issues. We will give a brief introduction of the

experimental setup, for more information see Pedersen et al. [18].
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Table 1: Selected IQ metrics for the evaluation of CPQAs.
X

X
X

X
X

X
X

X
X

Metric

CPQA Sharp-

ness
Color

Light-

ness
Contrast

Arti-

facts

ABF [9] X X X

∆LC [10] X X X X

Cao [11] X X

S-CIELAB [12] X X X

S-DEE [13] X X X

SHAME [14] X X X

SSIM [15] X X X X

VSNR [16] X X X

WLF [17] X X

Images

For the experiment we selected 25 images (Figure 1), which

were chosen based on several image characteristics, such as light-

ness, saturation, and details. The images were 150 dpi uncom-

pressed 16-bit sRGB tiff files.

Figure 1. The 25 images used in the experiment.

Color workflow

The images were printed on an Océ Colorwave 600 CMYK

wide format printer on Oce Red Label (LFM054) plain uncoated

paper using three different rendering intents: perceptual, relative

colorimetric, and relative colorimetric with Black Point Compen-

sation (BPC). Two sets of images were printed at the same time,

one set for first phase and one set for the second phase.

Viewing Conditions

The observers were presented with a reference image on an

EIZO ColorEdge CG224 display for the first phase, and an EIZO

ColorEdge CG221 for the second phase, at a color temperature of

6500K and a white luminance level of 80 cd/m2, following the

specifications of the sRGB. The printed images were presented

in random order to the observers in a controlled viewing room at

a color temperature of 5200K, an illuminance level of 450 ±75

lux and a color rendering index of 96. The observers viewed the

reference image and the printed image simultaneously from a dis-

tance of approximately 60 cm. The experiment followed the CIE

guidelines [19] as closely as possible.

Instructions

The instructions given to the observers focused both on the

overall quality rating of the reproduction and on the QAs.

Phase 1: Naive observers
The naive observers were given the following instructions:

Judge the reproductions according to overall quality and five

quality attributes (color, lightness, contrast, sharpness, and ar-

tifacts).

A description of the CPQAs, similar to the one above, were given

to the observers along with the instructions. The rating of overall

quality and the CPQAs was carried out as a category judgment

experiment, and a seven step scale was provided to observers to

assist them in their judgment.

Phase 2: Expert observers

The expert observers were given the following instructions:

Rank the reproductions according to quality.

- Elaborate on the attributes you use and quality issues you ob-

serve, i.e. all attributes you consider.

- If possible try to give an indication of the importance of the is-

sues and attributes, and important areas.

The entire experiment was filmed, and the observers were encour-

aged to describe and talk about their observations.

Preparing the printed images for image quality
metrics

In order to apply IQ metrics to the printed images from the

experiment, they need to be digitized since the IQ metrics require

a digital input. To perform this we have adopted the framework

by Pedersen and Amirshahi [4]. The first step is to the scan the

printed images. An Epson 10000XL was used for scanning the

images for the first phase, and a HP ScanJet G4050 for the second

phase. The resolution was set to 300 dpi. The scanners were char-

acterized with the same test target as used to generate the printer

profile. The advantage of this is that we can compare the cor-

rectness of the profiles by comparing it to the measured values of

the printed test target. It also ensures that the scanner profiles are

based on the same media as the printed images.

To evaluate the quality of the obtained profiles we have

adopted the method by Sharma [20]. First the test target was

scanned, and then used to generate a profile for the scanner. The

reference data was the measured target used to generate the printer

profile. The scanned test target was then opened in Adobe Pho-

toshop CS3, and the generated scanner profile was assigned to

the image. Afterwards the image was converted to CIELAB us-

ing ’convert to profile’ using absolute colorimetric and the color

matching module was Adobe (ACE).

A script was written to calculate the mean CIELAB values

for each patch in the scanned image. The color difference be-

tween the measured CIELAB values and scanned CIELAB values

was calculated to get a measure of the correctness of the profile.

The ∆E∗

ab has been used as a measure for the differences between

them. For the Epson 10000XL a mean ∆E∗

ab of 2.06 was found,

and for the HP ScanJet G4050 a mean ∆E∗

ab of 1.63. These values

are only slightly higher than the ones found by Sharma [20], and

therefore considered to be acceptable.

Since both experimental phases were carried out under

mixed illumination, the CIECAM02 chromatic adaptation trans-

form [21] was used to ensure consistency in the calculations for

the metrics. The measured reference white point of the monitor

and the media were used as input to the adaptation transform, fol-

lowing the CIE guidelines [21].
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Evaluation of Image Quality Metrics

The evaluation of the metrics have been divided into two

phases, one for the naive observers and one for the expert ob-

servers. Each phase containing different methods for the evalua-

tion adapted to the task given to the observers.

Phase 1: Naive Observers

In this phase each observer judged overall quality and the five

CPQAs for each image, which enabled us to compute z-scores for

each of these. For the first phase 24 of the 25 images (Figure 1)

were used in the experiment.

For calculating the performance of the IQ metrics we have

adopted several different methods. We will investigate the perfor-

mance of the IQ metrics both image by image, and the overall per-

formance over the entire set of images. For the image wise evalu-

ation, the Pearson correlation [22] between the calculated quality

and the observed quality is used. The mean of the correlation for

each image in the dataset and the percentage of images with a cor-

relation above 0.6 is used as a measure of performance. While for

the overall performance, we will use the rank order method [23],

where the correlation between the z-scores from the observers and

the z-scores of the metric is the indication of performance. How-

ever, for the rank order correlation one should consider that we

only have three data points, and therefore it is also important to

perform a visual comparison of the z-scores.

Sharpness

Table 2 shows the results of the evaluation for the IQ metrics

selected for the sharpness CPQA. SSIM performs quite well with

a correlation above 0.6 in 50% of the images, but the mean cor-

relation over the 24 images is only 0.29. The rank order method

used to evaluate the overall performance calculates z-scores for

the metric, which can be compared against the z-scores from the

observers. A metric capable of correctly measuring the CPQA

will have z-scores similar to the z-scores from the observers. The

correlation between the z-scores is used a performance measure,

and SSIM shows an excellent correlation (1.00) with a low p-

value (0.03). Investigation of the z-scores from SSIM and the

observers shows a striking resemblance as seen in Figure 2, there-

fore SSIM seems to be the best metric for the sharpness CPQA.

Table 2: Performance of the metrics for the sharpness CPQA. Mean

correlation implies that the correlation has been calculated for each

image in the dataset, and then averaged over the 24 images. Percent-

age above 0.6 is the percentage of images where the correlation is

higher than 0.6. The rank order correlation indicates the correlation

between the metric’s z-scores computed with the rank order method

[23] and the observer’s z-scores for the CPQA, in addition the p-value

for the correlation is found in the parenthesis.

Metric Mean correlation
Percentage

above 0.6

Rank order

correlation

CAO -0.15 17 0.99 (0.07)

∆LC -0.04 21 0.84 (0.37)

SSIM 0.29 50 1.00 (0.03)

VSNR 0.04 33 -0.68 (0.52)
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Figure 2. The rank order z-scores for SSIM plotted against the observer z-scores

for the sharpness CPQA, both with a 95% confidence interval. The red line showing

the linear regression between the z-scores indicates that SSIM is a suitable metric to

measure the sharpness CPQA.

Color

For the color CPQA none of the evaluated IQ metrics stand

out in terms of the mean correlation or percentage above 0.6 (Ta-

ble 3). For the rank order correlation some better results are

found, indicating that the ranking for each image on an overall

basis agrees to a certain extent with the naive observers. This ap-

plies especially for S-DEEColor and SHAME, but these also have

a high p-value. An investigation of the z-scores, similar to what

was done for SSIM regarding sharpness in Figure 2, reveals that

SHAME gives a similar ranking of the z-scores, while S-DEE

does not. It is also interesting to notice that SHAMEColor has a

low performance, which indicates that the lightness differences

contribute to SHAME’s high performance. The results for the

color CPQA does not give any concrete results on which metric

that should be used to measure it, but for an overall indication of

color quality SHAME might be adequate.

Table 3: Performance of the metrics for the color CPQA.For further

explanation see Table 2. The subscript Color indicates that only the

color part of the metric has been evaluated.

Metric

Mean

correla-

tion

Percentage

above 0.6

Rank order

correlation

ABF -0.06 25 0.28 (0.82)

ABFColor 0.02 21 0.28 (0.82)

S-CIELAB -0.11 21 0.59( 0.60)

S-CIELABColor -0.01 33 0.43 (0.72)

S-DEE -0.04 21 0.72 (0.49)

S-DEEColor 0.04 25 0.84 (0.36)

SHAME 0.00 25 0.84( 0.36)

SHAMEColor -0.09 17 0.28 (0.82)

Lightness

SSIM shows the highest mean correlation for the evaluated

IQ metrics (Table 4), it also has the highest percentage of im-

ages above 0.6 in correlation. The rank order correlation is, as

for the sharpness CPQA, very high together with a low p-value.

The reason for this is that the rating of lightness by the observers

is very similar to the rating of sharpness, and therefore SSIM has

a similar performance. Some metrics, such as SHAME and S-

CIELABLightness have a fairly high percentage of images above

0.6 in correlation, however, they have a low correlation for the
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rank order method. This indicates that they are not able to cor-

rectly rank the reproductions as the observers, but that they have

a similar frequency distribution as the observers’ z-scores.

Table 4: Performance of the metrics for the lightness CPQA. For fur-

ther explanation see Table 2. The subscript Lightness indicates only the

lightness part of the metric.

Metric

Mean

correla-

tion

Percentage

above 0.6

Rank order

correlation

ABF -0.20 25 -0.94 (0.22)

ABFLightness -0.03 33 -0.94 (0.22)

∆LC 0.14 33 0.89 (0.30)

S-CIELAB -0.20 17 -0.77 (0.44)

S-CIELABLightness 0.03 38 -0.77 (0.44)

S-DEE -0.22 13 -0.65 (0.55)

S-DEELightness -0.05 29 -0.83 (0.38)

SHAME 0.01 38 -0.49 (0.68)

SSIM 0.32 58 0.99 (0.05)

SSIMLightness -0.22 33 -0.98 (0.12)

VSNR -0.18 21 -0.76 (0.45)

Contrast
SSIM also performs quite well for the contrast CPQA. From

Table 5 we can see that it has a mean correlation of 0.32, but for

half the images in the dataset it has a correlation above 0.6. The

rank order method confirms a good performance by indicating a

similar ranking by the metric as by the observers. It is also inter-

esting to notice that by extracting the contrast calculation in SSIM

we are able to slightly increase the percentage of images above 0.6

in correlation. The WLF, calculated as the difference in contrast

between the original and reproduction, has the same performance

as SSIMContrast, but with a higher rank order correlation. Visual

inspection of the z-scores shows that SSIM provides a more cor-

rect z-score with larger differences between the rendering intents,

even though WLF has a higher correlation.

Table 5: Performance of the metrics for the contrast CPQA. The sub-

script Contrast indicates only the contrast part of the metric. For fur-

ther explanation see Table 2.

Metric
Mean correla-

tion

Percentage

above 0.6

Rank order

correlation

∆LC 0.27 38 0.48 (0.68)

SSIM 0.32 50 0.86 (0.34)

SSIMContrast 0.32 54 0.84 (0.37)

WLF 0.32 54 0.97 (0.17)

Artifacts
The results from the observers for the artifacts CPQA

showed small differences between the different rendering intents,

making it a very difficult task for the IQ metrics. The best metric

was ∆LC (Table 6). The rank order correlation gives a high cor-

relation, but also a fairly high p-value. The visual inspection of

the z-scores show that ∆LC correctly ranks the rendering intents

as the observers, but it is difficult to give a conclusive result due

to the small visual differences.

It is also worth noticing that the Cao metric performs second

best in terms of mean correlation and rank order correlation, being

specifically designed for artifacts.

Table 6: Performance of the metrics for the artifacts CPQA. For fur-

ther explanation see Table 2.

Metric
Mean corre-

lation

Percentage

above 0.6

Rank order

correlation

ABF 0.01 25 -0.18 (0.88)

Cao 0.15 38 0.50 (0.67)

∆LC 0.25 42 0.84 (0.37)

S-CIELAB -0.05 25 0.16 (0.90)

S-DEE -0.01 17 0.33 (0.78)

SHAME -0.03 33 0.51 (0.66)

SSIM 0.09 29 0.44 (0.71)

VSNR -0.20 25 -0.94 (0.22)

WLF 0.03 21 0.18 (0.88)

Phase 2: Expert Observers

During the second experimental phase observers stated and

pointed out regions where different quality issues were perceived.

Since the experiment was filmed, it enabled the authors to go

through the video and mark the issues and regions found by the

observers. This enabled us to perform an in-depth evaluation of

the IQ metrics, which ensures that the metrics are capable of mea-

suring the different CPQAs. We will only include the metrics that

performed well in the first evaluation phase, since these are the

ones most likely to be suitable for the CPQAs.

We will use the picnic image (Figure 3) to show how the

metrics perform regarding the different CPQAs. The observers

indicated that this image contained a wide variety of QAs and

different quality issues. These quality issues are the important

issues for the IQ metrics to detect. Based on the comments from

the observers important regions have been found, each containing

different quality issues:

(a) Picnic image (b) Tree mask

Figure 3. The picnic image has been used to show the differences of the IQ metrics.

On the right side one of the masks used to evaluate the IQ metrics, where the mean

has been calculated within the black region

• Tree: in this region the observers commented mainly on de-

tails, but also on lightness and contrast.

• Shoe: loss of details perceived in one of the reproductions.

• White shirt: a hue shift in one of the reproductions.

• Hair: a hue shift in the hair of the asian girl in the middle.

• Pink shirt: one reproduction was too saturated.

• Grass: detail and saturation issues.

• Skin: a hue shift found in some reproductions.

• Cloth: a reproduction had a lighter red cloth than the others.

• Blanket: lightness issues.

• Sky: saturation and detail issues.
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We have taken the approach of comparing the rank of the IQ

metrics to the rank of the observers in these regions. A mask for

each region was created (Figure 3(b)), and the mean value for the

IQ metrics was used to calculate the rank. The observers did not

rank all reproductions for all regions or quality issues, but instead

they indicated which one was the best or the worst. We consider it

to be important for the IQ metrics to predict which reproduction is

clearly better or worse. In addition to the ranking of the metrics,

a visual inspection of the quality maps from each IQ metric has

been carried out by authors. This visual inspection will reveal

more information about the performance of the metrics than the

mean value would.

SSIM

SSIM performed quite well for the sharpness, lightness, and

contrast CPQA, and fairly well for the artifact CPQA in the first

phase. In the second phase SSIM was able to detect the correct

order regarding detail preservation, and corresponds well with the

results from the observers, as seen from the tree, grass, and shoe

regions in Table 7. The visual inspection of the quality map re-

vealed that SSIM is able to detect even small loss of details. These

results support the findings in the first phase, where SSIM per-

formed well for the sharpness CPQAs. SSIM also correctly de-

tected an area with a hue shift (hair), since this area in addition had

a lightness shift. In the cloth region, where lightness differences

were perceived by the observers, SSIM gave the correct ranking.

SSIM also gave the same ranking as the observers in the tree re-

gion, where lightness and contrast were used by the observers.

This shows that SSIM can be suitable to measure both lightness

and contrast, but further analysis is required to ensure that SSIM is

able to measure these CPQAs. One should also notice that SSIM

gave the same ranking for all regions in the image.

Table 7: Ranking from SSIM for the different regions in the image

where observers commented on quality issues. P = perceptual ren-

dering intent, R = relative colorimetric rendering intent, and B = rela-

tive colorimetric rendering intent with BPC. If (R,P) > B, then B was

ranked as the worst, but the observers did not rank the two other re-

productions. () for the metric side indicates that the mean values are

not significantly different with a 95% confidence level. A mask was

created based on the comments from the observers, and the mean of

the results from the IQ metric was used a basis for the ranking.

Region Observers SSIM Correct ranking

Tree P > R (B) P > B > R Yes

Shoe P > R (B) P > B > R Yes

White shirt P > B (R) P > B > R Yes

Hair (P,B) > R P > B > R Yes

Pink shirt (P,B) > R P > B > R Yes

Grass P > (R,B) P > B > R Yes

Skin R > B > P P > B > R No

Cloth (B,R) > P P > B > R No

Blanket (R,B) > P P > B > R No

Sky P > (R,B) P > B > R Yes

SHAME

SHAME produced the best results for the color CPQA in the

first experimental phase. However, since this metric does not pro-

duce a value for each pixel, it is difficult to evaluate against the

results of the experts. Nevertheless, SHAME uses a weighting

map based on hue angle, where the more pixels of the same hue,

the higher importance they are given. The highest weights are

given to the blue and green regions of the image. The sky region,

containing most of the blue hue pixels, is given the highest impor-

tance. It is also a region where observers noticed saturation issues.

The grass and tree regions are most likely what caused SHAME’s

higher performance compared to the other metrics, since these

also have been commented on by the observers.

The reason for SHAME’s varying results for the different im-

ages in the dataset most like stems from the weighting based on

the hue angles. In some images large uniform areas are found, but

these are not necessarily the regions-of-interest for the observers.

In these cases the large uniform areas are given a high weight,

while smaller regions, as the cloth and hair, are given a lower

weight. However, these smaller region might draw attention and

have high importance in the quality evaluation, and thereby result-

ing in a disagreement with the observers. Because of this SHAME

should be used with care when measuring the color CPQA.

∆LC
∆LC has the best performance for the artifact CPQA. The

expert observers did not specifically comment on artifacts, but in

one of the reproductions banding is visible in some regions. The

∆LC is not capable of detecting this, while other metrics such as

the ABF that has an edge preserving filter is able to detect this

artifact. However, the ∆LC is able to detect the detail issues in

the shoe, grass, and tree region as seen in Table 8. This is also

the reason why it performs quite well for the rank order correla-

tion for the sharpness CPQA in the first experiment phase. The

evaluation based on the second phase does not confirm whether

∆LC is suitable to measure the artifact CPQA, but it does show

that artifacts vary, and that it might be necessary to have different

metrics for different sub-artifacts.

Table 8: Ranking from ∆LC for regions in the image where observers

commented on quality issues. See Table 7 for more information.

Region Observers ∆LC Correct ranking

Tree P > R (B) P > B > R Yes

Shoe P > R (B) B > R> P No

White shirt P > B (R) P > B > R Yes

Hair (P,B) > R P > B (B,R) No

Pink shirt (P,B) > R (B,P) > R Yes

Grass P > (R,B) P >B > R Yes

Skin R > B > P P > B > R No

Cloth (B,R) > P P > B > R No

Blanket (R,B) > P P > B > R No

Sky P > (R,B) P > B > R Yes

Conclusion and Future Work
In this study we evaluated a group of IQ metrics against

the perceptual results from an experiment, with the intention of

proposing suitable IQ metrics for a set of five CPQAs. The anal-

ysis carried out show that the SSIM from Wang et al. [15] is the

most suitable IQ metric for the sharpness CPQA. This metric also

performs well for the lightness and contrast, but further investi-

gation of these CPQAs should be carried out to ensure that SSIM

is the most suitable metric. For the color CPQA, SHAME from

Pedersen and Hardeberg [14] shows good results, but further eval-
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uation is required for this CPQA as well. For the artifact CPQA

the results are inconclusive because it contains many different ar-

tifacts.

Future work will include additional evaluation to ensure that

the correct metrics are used in the evaluation of the CPQA, espe-

cially for the contrast, lightness, and artifact CPQA. When quality

values for each CPQA are obtained, the question of how to com-

bine them into a single number representing overall quality consti-

tutes an important future step. The results for the color CPQA also

reveal the importance of the characteristics of the image. How to

use these characteristics to select IQ metrics is also an interesting

possibility for future work.
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