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Abstract 
A project to evaluate current practices in fine art image 

reproduction is conducted in which pieces of artwork in various 

media are being imaged by participating museums. As part of this 

project, observers were asked to make adjustments in softcopy fine 

art reproductions. The goal is to see how people working in 

museums, libraries and archives make color adjustments to 

artwork presented to them on screen. Observers were led through 

various interfaces allowing them to adjust the image seen on the 

screen to better represent the original in a light booth. They were 

asked to make adjustments until the screen image was 'good 

enough,' as an exact match may neither be possible nor necessary 

for us to detect relevant patterns in adjustment among observers. 

Patterns or trends in adjustments by observers can be used as an 

indication of how images should be processed to match with the 

adjustment by observers most closely. The adjustments by 

observers were compared with the prediction by three chromatic 

adaptation models. Overall the Fairchild92 model outperforms the 

Bradford and CAT02 transformations in matching with 

adjustments by observers more closely. 

Introduction 
The use of soft proofing in cross-media color reproductions is 

becoming more and more popular with the wide availability of 

display and computing technologies. In museums, visual editing 

and retouching of digital images of the collections are performed 

by experts for online access by visitors and researchers in the form 

of catalogs and postcards, for example. The demand to have the 

softcopy match the appearance of the original hardcopy closely is 

apparent. To achieve the goal, not only do we need to understand 

how images of artwork are visually edited, but we also need to 

learn the difference in perceiving color on self-luminous objects 

(e.g., display) and hardcopy surfaces (e.g., paper). The use of soft 

proofing in the hardcopy workflow is not yet well established in 

the museum world. This experiment will also inform us on what 

needs to be done to build acceptance for the use of soft proofing in 

this field. 

When looking at a piece of paper under incandescent lighting, 

the paper appears white. However, if the chromaticity of the paper 

under the incandescent light is set as the display white point, we 

will have a difficult time seeing the display color as white. As for 

hard copies we are more likely to discount the illuminant color, 

while for self-luminous displays we hardly fully adapt to the white 

point, if it is further away from that of the natural daylight. 

‘Discounting the illuminant’ refers to the cognitive ability of 

observers to interpret the colors of objects based on the illuminated 

environment in which they are viewed.1 While cognitive 

mechanism relies on the observers’ knowledge of the illuminant, 

thus being inactive when viewing softcopy, sensory mechanism is 

always active, as it automatically responds to the stimulus energy.1 

Modern chromatic adaptation models are able to predict 

appearance matches across different media by accounting for 

incomplete chromatic adaptation. As a result, cross-media color 

reproduction is facilitated by using such calculations to predict 

color matches across different media and illumination conditions.2 

In the experiment, observers were asked to adjust images off 

the camera to match with the original artwork in a light booth. 

Three chromatic adaptation transforms (CATs), Bradford,3 

Fairchild924 and CAT025, 6 were selected to predict adjustments by 

observers. Bradford transformation is essentially a von Kries 

transformation with an additional exponential nonlinearity on the 

blue channel.1 In the experiment, the linearized Bradford 

transformation is included, given that it is the default chromatic 

adaptation in the latest ICC profile specification (ICC Version 

4.2.0.0). The simplified Bradford transformation does not account 

for incomplete adaptation, while the CAT02 and Fairchild92 

models are linear in nature and both can predict incomplete 

adaptation. Another distinction is that the Bradford and CAT02 

models transform from tristimulus values to a ‘spectrally 

sharpened’ cone space while the Fairchild92 model converts to 

cone response directly by the Hunt-Pointer-Estevez (HPE) matrix. 

The von Kries predictions obtained using sharpened responsivities 

tend to be more color constant than von Kries predictions obtained 

using cone responsivities.1 However, negative responsivity at some 

wavelengths are found in ‘spectrally sharpened’ cone space, thus 

making it physiologically implausible.1 It is still under debate 

whether HPE or CAT02 matrices yield more accurate prediction 

for chromatic adaptaion.7 

Experiments 
Observers were asked to adjust the softcopy on the display to 

match with the original in the light booth. Because it was of 

interest to learn how experts visually edit images, observers were 

allowed to make adjustments rather than having them provide data 

for static stimuli. The experimental setup is shown in Figure 1.  

A 30” Apple Cinema Display was used for showing softcopy 

reproductions, and an LMT 1210 colorimeter was used to 

characterize the display. The display characterization model 

proposed and detailed by Day, Taplin and Berns8 was followed to 

ensure accurate mappings between LCD digital counts and XYZ 

tristimulus values. Display white point and luminance were 

adjusted to match with those of the light booth by using a Halon 

perfect reflecting diffuser (PRD). Additionally, the luminance and 

chromaticity of the background of the light booth were measured 

using a PhotoReserach-650 spectroradiometer. The background of 

the software interface was adjusted to match these settings. The 
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colorimetric performance of the display was evaluated. The mean 

and max color differences were 0.62 and 1.42, respectively. 

 
Figure 1. Lab setup 

Seventeen observers participated in the experiment. Their 

ages range from early 20s to mid-70s. Most observers are working 

in the area of artwork reproduction in museums, libraries or 

archives. Observers were divided into two groups to adjust two 

different sets of images. The first set included Daisy, Night Sky, 

Orchid, and Photo, and the second set included Orchid, Bridge, 

Daisy, and Aquatint. The first image in each set was used for 

training, thus being excluded from the analysis. The reproductions 

of all six paintings from one institution are shown from Figure 14 

to 19 in the Appendix as examples. They can also be accessed at 

http://artimaging.rit.edu/research/images. 

Source images from different museums were downsized in 

Photoshop© to fit the display. A chromatic adaptation was usually 

needed if the white point of the source color space (AdobeRGB in 

this case) was different from that of the display. However, in this 

experiment, the chromatic adaptation was not used. The chromatic 

adaptation model that predicted the adjustments by observer most 

closely was to be investigated so that a closer starting point could 

be determined.  

To evaluate the performance of the chromatic adaptation 

models, a color difference equation, CIEDE20009 was used. Color 

difference equations were derived from comparisons of simple 

color patches under a controlled environment, and therefore, it 

might be insufficient to tell the color difference for complex 

images, such as artwork reproductions. For example, an original 

and its halftone reproduction would look almost identical to each 

other, but calculating their color difference pixel-by-pixel would 

dramatically overestimate the ‘perceptual difference’ between the 

two. 

To eliminate details in images that could not be differentiated 

by human eyes due to spatial frequency, a spatial extension to the 

CIELAB system, S-CIELAB,10 was used. An input image was 

initially converted into one luminance and two chrominance color 

components. Each component image was then passed through a 

spatial filter that was selected according to the spatial sensitivity of 

the human eye for that color component. The final filtered images 

were transformed into XYZ format so that the color difference 

equation could be applied.11 

The mixed-effect Analysis of variance (ANOVA12) was used 

to understand the image difference. Several factors were identified 

in this experiment: Chromatic Adaptation Transform (CAT), 

Observer, and Image. CAT was a treatment factor and it was fixed, 

as the three levels (the Bradford, Fairchild92, and CAT02 models) 

were of special interest. Observer was a random factor, because the 

participants in the experiment were not themselves of interest. Of 

more interest was how a large population of people in museums 

did visual editing. Similarly, Image was supposed to be a random 

factor. However, the number of images (three in each group) was 

not large enough to represent the whole population of images. A 

more reasonable alternative was to focus on these testing images. 

All three main factors and their two-way interactions were 

included in the full mathematical model. A 0.05 confidence level 

was used to distinguish significant factors from redundant ones. 

The statistical analysis was done in Minitab©. 

User Interface  
Software was developed in Matlab© on the extension 

provided by the high-level Psychophysics Toolbox©. Each image 

could be edited on a global and local scale. The hue adjustment 

interface is shown in Figure 2. 

 
Figure 2. Image hue adjustment interface 

In Figure 2, eight surrounding images were of the same 

lightness and same increment in chroma from the central one, but 

of different hue. The image hue could be adjusted by clicking one 

of the surrounding images around the central image (current pick). 

When one of the surrounding images was selected, the selected 

image appeared in the center and all the other surrounding images 

shifted in hue based on the central one accordingly.  

Once the hue adjustments were complete, observers moved on 

to the global adjustment interface as shown in Figure 3. Image 

brightness, contrast, saturation, and sharpness could be adjusted by 

the sliders to the right of the image. 

The global adjustments were indiscriminate to colors, and 

therefore the local adjustment tools in Figure 4 could be used in 

order to make certain colors right without affecting other colors in 

the image. The images after local adjustments were compared with 

predictions by CATs. CATs were derived by fitting adjustment 

data by observers, even though what were predicted in the 

experiment were complex images rather than simple ones.  

In addition, while CATs were global operators, they by no 

means changed colors in the same amount. The refinement on a 

local scale became a useful complement to the global adjustments 

to ensure the most accurate results by observers. 
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Figure 3. Global color adjustment interface 

 
Figure 4. Local color adjustment interface 

Results 
In Figure 5, hue adjustments in a* and b*, and global 

adjustments in lightness, contrast, chroma and sharpness for each 

image are shown. The value of 1 on the y-axis meant average 

adjustment was zero across observers on that dimension. While the 

adjustments were image-dependent, certain general trends could 

still be detected. In the top central plot, observers increased b* by a 

noticeable margin for all images except for Night sky. As the 

images were encoded in XYZ with D65 as default white point, the 

images appeared bluish on the D50 display compared with the 

original in the light booth. Observers were trying to make images 

more yellowish. From the plot on the bottom right, sharpness was 

enhanced for all images except for Aquatint. The increase in 

sharpness might result from the loss in details when the images 

were captured or during downsizing of images. Different 

interpolation methods to downsize images in Photoshop© could 

even complicate the workflow in preparing images.  

Image-dependent information could also be learned from 

Figure 5. Heavy impasto could be found in the sky in the hardcopy 

of Night sky, which was difficult for reproduction. The sharpness 

plot in Figure 5 shows that observers increased the sharpness of 

Night Sky much more than they did to all the other images. 

Additionally, the increases in lightness and contrast were most 

evident for Photo in Figure 5, indicating a loss of lightness 

dynamic range in the softcopy of Photo. 

 

 
Figure 5. Global color adjustments of each image
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Figure 6. Local color adjustments for each image

Local adjustments are shown in Figure 6. The y-axis is hue 

angle (in degree unit) and the x-axis is chroma. The cross ‘x’ at 

one end of each line was the color selected for adjustments, and the 

diamond was the target color. Lines of the same color in Figure 6 

were local changes made by one observer. 

For Night sky (top left plot in Figure 6), most adjustments 

were made at two hue angles, around 50 degrees and 270 degrees. 

The adjustments made at around 50 degrees were generally 

pointing toward more chromatic direction, indicating the 

reproduced yellowish color in the softcopy was not chromatic 

enough. It might result from the corresponding color matching 

from D65 to D50. Or the color of the sky (blue) was adjusted to be 

right during global hue adjustments, while the yellowish color 

needed more refinement. The colors adjusted at around 270 

degrees were mostly of lower chroma.  

For Orchid (top central plot in Figure 6), local changes were 

made to colors of chroma lower than 30. The longest line in the 

plot was misleading, as the hue was not changed that much. 

(Actually, its hue angle was changed from somewhere positive to 

negative around 0 degree.) 

For Photo (top right plot in Figure 6), almost all adjustments 

were made at around 70 degrees on the hue axis, pointing towards 

more chromatic directions, because Photo was relatively neutral 

and its dominant hue was around 70 degrees. 

Across all images, almost all big local changes in hue 

occurred in colors of low chroma. This may result from the fact 

that during global adjustments, observers might have concentrated 

more on the central object in the scene (such as the bridge or 

orchid) while areas of lower chroma (usually the background) 

underwent more changes during local adjustments.  

Chromatic Adaptation Models 
The Fairchild92, CAT02, and Bradford models were 

implemented and evaluated to determine which model better 

predicted the adjustments made by observers. Daisy adjusted by 

one observer and predicted by all three models are shown in Figure 

7 and 8 as an example. 

 
Figure 7. Daisy (source image in D65 XYZ) 
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Figure 8. (Left top) Adjusted image by one observer (Right top) Fairchild92 
model (Left bottom) CAT02 model (Right bottom) Bradford transformation 

 The original image in Figure 7 appeared noticeably more 

bluish on D50 display than the hardcopy in the D50 light booth, 

given the absence of chromatic adaptation before adjustments by 

observers. The adjusted image by one observer matches with the 

predictions by three chromatic adaptation models more closely in 

Figure 8 than with the original in Figure 7.  

 The S-CIELAB model was evaluated by comparing Daisy 

predicted by the Fairchild92 model before and after the spatial 

filtering. The details, such as the canvas in the top right plot in 

Figure 8, became unnoticeable in Figure 9. Color difference was 

calculated then between the adjusted image by observers and the 

image through chromatic adaptation models both after the spatial 

filtering by the S-CIELAB model.  

 

Figure 9. Daisy by Fairchild92 model processed by S-CIELAB 

 Color difference was also calculated when spatial filtering 

was absent. The mean color difference between adjusted images 

and outputs from the three chromatic adaptation models increased 

only by a small margin. One important reason was that the viewing 

angle assumed to be constant in the S-CIELAB model did not 

remain unchanged in the experiment, as observers were likely to 

lean ahead and sat really close to the screen when making 

adjustments.  

 
Figure 10. Image difference map for Daisy adjusted by one observer 

 The error distribution map of Daisy (when the S-CIELAB 

model was used) by one observer is shown in Figure 10. Daisy 

adjusted by the observer was predicted well by all three models, 

given mean image difference between 3 and 4. The pedals of daisy 

were predicted better than other parts of the painting, as indicated 

by the deep bluish color in the image difference map in Figure 10.  

 The ANOVA analysis was performed to discover main effects 

and interactions that contributed significantly to the image 

difference. The analysis was performed on two sets of images 

separately. For Group 1 (Night Sky, Orchid, and Photo), the 

interaction between Observer and Model was insignificant (p-

value=0.376), indicating that no model predicted certain observer’s 

adjustments significantly better than the adjustments by other 

observers. It was reasonable because these models were designed 

to match with the cone responsivities (or color matching functions) 

of average observers. The main effect, CAT, was significant (p-

value=0.014), together with the interaction between Image and 

Observer (p-value=0.001), and that between Image and model (p-

value=0.001). The Image and Observer main effects were 

insignificant (p-value=0.345 and 0.229 respectively), but they were 

retained in the model due to hierarchy. The adjusted R-Sq of the 

final model was over 95%. Given the significance of interaction 

terms in the model, an interaction plot was made to better 

understand the data as shown in Figure 11.  
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Figure 11. Interaction plot between Image and CAT for 1

st
 set of images 

In Figure 11, the performance of the Fairchild92 model was 

better than that of the other two models for Night sky and Orchid 

but not for Photo, as indicated by the lower mean image difference 

of the first two paintings by the Fairchild92 model. 

98754321

12

10

8

6

4

2

Observer

M
e
a
n

Night sky

Orchid

Photo

Image

Interaction Plot for Image Difference
Data Means

 
Figure 12. Interaction plot between Image and Observer for 1

st
 set of images 

In Figure 12, the interaction between Image and Observer is 

examined. No image was predicted to have the least mean 

colorimetric errors, thus being consistently closer to the adjusted 

images across all observers. It indicated the large variability in 

adjustments among observers, and the confounding effect between 

observers and images. The variability might result from a few 

factors. First, observers were asked to adjust three images in 30 

minutes, while it could usually take them hours to adjust one image 

in their work. Secondly, not all observers were familiar with image 

editing software, which was confirmed from their feedback that the 

software had a learning curve.  

The ANOVA analysis of the second set of images (Bridge, 

Daisy and Aquatint) was performed, and the interaction between 

Image and Observer was significant (p-value=0.001), in agreement 

with the result from the first image set.  

The interaction between Image and CAT was significant (p-

value=0.002), and the interaction plot is shown in Figure 13. The 

Fairchild92 model outperformed the other two models for Bridge 

and Daisy but not for Aquatint. Aquatint was similar to Photo in 

appearance in that neither had strong chromatic colors.  
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Figure 13. Interaction plot between Image and CAT for 2

nd
 set of images  

From the above analysis, no chromatic adaptation model was 

found to better predict adjustments by observers across all images 

used in the experiment. By comparing Figure 11 and 13, the 

Fairchild92 model generally matched with the visual editing by 

observers more closely than the Bradford or CAT02 model except 

for images with near-neutral appearance. The predictions by the 

Bradford transformation were not much worse than the other two. 

Given its inability to discount the illuminant and simplicity in 

implementation, the performance of the Bradford model was better 

than expected. However, common practice of comparing displays 

and reflection prints side-by-side produces unpredictable color 

appearance,1 as viewing softcopy and hardcopy simultaneously 

might have caused the state of adaptation to be unstable. It has 

been noted that short-term memory matching technique produced 

more reliable results.1 

Conclusions 
An experiment investigating current soft proofing of artwork 

reproductions was made, during which observers were asked to 

make appearance match of artworks across two different media. 

While some general features could be extracted from adjustments 

by observers, the adjustments were also image dependent. The 

significance of the interaction between Observer and Image 

highlighted their confounded effect. Color adjustments by 

observers were compared with the predictions by the Bradford, 

Fairchild92 and CAT02 chromatic adaptation models. Based on 

the mixed-effect ANOVA analysis, the Fairchild92 model 

outperformed the Bradford and CAT02 model for all the testing 

images except those with neutral appearance. The S-CIELAB 

model was used to remove unperceivable details at certain spatial 

frequencies, but its effect was limited by the fact that the viewing 

distance did not always remain constant during adjustments.  

Visual editing made by experts in museums sometimes 

involves more complex lighting, such as daylight from outside and 

fluorescent light in the office. To account for different viewing 

conditions, such as changes in illuminance level, background or 

surround, a color appearance model should be included in the 

future work. The lighting condition in a local museum was 

measured, and more realistic parameters would be used to serve 

accurate cross-media reproductions by color appearance models.  
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Appendix 

 
Figure 14. Aquatint 

 

Figure 15. Night Sky 

 
Figure 16. Bridge 

 

Figure 17. Daisy 

 

Figure 18. Orchid 

 
Figure 19. Photo 
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