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Abstract
Estimating the spectral reflectance of a printed patch is

an important task in the printing industry for several pur-
poses such as ICC profiling and maintaining color consistency.
However, equipment for accurate spectral reflectance estima-
tion (spectrophotometers) is expensive. In this work we sug-
gest to use known characterization of the printer output in order
to achieve accurate estimation of spectral reflectance from only
three-channel measurement, such as provided by the standard sta-
tus T densitometers.

The mean estimation error we achieve on known substrates is
0.13ΔE. Further results indicate an estimation error below 1ΔE
for a set of unknown substrates.

Introduction
Measuring color is of prime importance in the printing in-

dustry. It is also a very difficult and expensive task. Measuring
color requires calibrated sensors, and controlled lighting. Expo-
sure time needs to be long and apertures needs to be wide to re-
duce noise and possible effects of halftoning. As a result color
measurement equipment is expensive and slow, and usually can-
not take measurements at the printing speed of a press.

In this paper we propose a new model based approach for
inline spectrophotometry. In a nutshell: We do not try to build a
general spectrophotometer - this is too expensive. Nevertheless,
we propose an accurate reflectance estimator for prints produced
by a printer or press using known inks and an approximately
known medium. Given a printer or press, its ink and media, we
can print only a very limited set of spectra. Actually the vari-
ability is roughly approximated by four parameters: The relative
amounts of Cyan, Magenta, Yellow, and Black inks used. In this
paper, we show that this constraint enables a very accurate spec-
tral estimation.

The mean estimation error we achieve on known substrates
is 0.13ΔE1 and the 95% estimation error is 0.34ΔE. Further re-
sults indicate a mean estimation error below 1ΔE for unknown
substrates. To the best of our knowledge this work is novel in the
prior it uses and the method it uses to apply them. The level of
accuracy we achieve is better by an order of magnitude from the
current state-of-the-art.

Prior Art
Maloney and Wandell [2] seem to be the pioneers in the field

of spectral reflectance estimation. In their work both the spectral
reflectance and the ambient light are modeled as a linear combina-
tion of spectral reflectance functions and basis lights respectively.

1All ΔE values given here refer to ΔE2000 [1].

Unfortunately, they only provide a brief verbal description of the
procedure, and do not provide any evidence of accuracy. Dupont
[3] reports an extensive overview of number of reflectance recon-
struction methods. Hawkyard [4] was found to perform the best.
Hawkyard assumes that for a given wavelength the reflectance is
the weighting sum of the color matching functions weighted by
the illuminant spectral power distribution. Wang et al. [5] pub-
lished an improvement of Hawkyard algorithm, whereby it is con-
verted from being iterative to analytical.

Schettini and Zuffi [6] developed a genetic algorithm-based
strategy. They also assume the spectral reflectance is a linear com-
bination of a set of basis function. They tested in their work sev-
eral such sets of functions, and concluded that the trained basis
using the PCA methods outperform all the other sets. Similar
ideas are suggested by Connah et al. [7], who discuss a model
of reflectance estimation in multispectral imaging system. The
estimation error they reports is around 2-4 ΔE for 3 sensors.

Sharma and Wang [8] developed a method of recovering re-
flectance from colorimetric data under constraints of known re-
production media. They used neural network-based algorithm
for transforming between the XYZ values and the spectral re-
flectance. Their work produced mean ΔE94 values of 0.3− 0.5,
and 95% 0.7−1.8 for same media depending on the printing pro-
cess they trained on. These results are very good, but relate to
accurate XYZ measurements that are not usually available.

DiCarlo and Wandell [9] also suggest using knowledge about
surface reflectance spectra in order to estimate a measured spec-
trum. Their method overcomes the limitation of linear estimation
methods by extending the estimation function from a hyperplane
to a more general surface. Their results show a reduction of 12%
in the error, compared to linear estimation.

Description
We denote the spectral reflectance of a printed color patch as

s ∈ Rl . Usually s is a vector representing the average reflectance
in 10nm intervals in the visual spectrum range (380−730nm), in
which case l = 36. We are given measurements m1,m2, . . . ,mn of
this color patch. The measurements are projections of s on a set
of filters l1, l2, . . . , ln (sensor sensitivities). For the three channel
densitometer n = 3. If we arrange the projections as rows in the
matrix L = [l1|l2| . . . |ln]T , and the measurements as a vector m =
[m1,m2, . . . ,mn]T , we have,

L · s = m. (1)

Notice that throughout this work we do not consider the illumi-
nant spectral power distribution. Instead, we assume that the il-
luminant is a known multiplicative factor in the equation and is
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already embedded2 in the filter profiles matrix L.
When L is known and m is measured, we would like to esti-

mate s. For l ≤ n this is a simple inverse or a least squares prob-
lem. However, in most cases the number of unknowns, l, is much
larger than the number of projections, n, which forces us to find
a proper prior for a solution. Typical priors used in similar prob-
lems are smoothness (minimization of gradients) or minimum en-
ergy (which leads to a pseudo-inverse solution). However, the
knowledge of the source of the measured patch to be an output of
a known press, points to an excellent prior for s in Equation (1).
Although mathematically s seems to be l-dimensional, it actually
depends on a small set of parameters: the coverage of each ink,
which implies that for four ink printing the specta span a four-
dimensional manifold in R36. Moreover, usually the black ink is
spectrally similar to a combination of color inks, and therefore the
dimensionality of printed spectra is approximately three.

To describe the connection between the ink coverage values
(ac,am,ay,ak) and the expected spectrum, we used the Neuge-
bauer Model [11], that describes well the HP-Indigo printing out-
come. For other presses that do not conform as well to the Neuge-
bauer model, a better model may have to be used. The Neuge-
bauer model for 4 inks is,

N(ac,am,ay,ak) = ∑
d∈D

Ad(ac,am,ay,ak) ·pd , (2)

where D is the set of all 16 subsets of {c,m,y,k}, pd ∈ Rl is the
reflectance spectrum when printing full coverage from each ink in
the combination d ∈ D (e.g. pcyk is the spectrum when printing
100% coverage of cyan, yellow and black), and finally,

Ad(ac,am,ay,ak) = ∏
i∈{c,m,y,k}

{
ai i ∈ d

(1−ai) i /∈ d
(3)

With the Neugebauer model as our prior, we turn to solve
Equation (1). Since the measured print is an output of a press, it
is reasonable to believe we know the amounts of inks that were
meant to be printed. In this case it is tempting to solve,

min
s

∥∥N(ac,am,ay,ak)− s
∥∥2

2 s.t. L · s = m. (4)

when the coverage values ac,am,ay,ak are known, we require the
spectral reflectance to match the projections’ measurements m,
and also to minimize the difference to the expected outcome of the
Neugebauer model. Setting this problem would have lead to a di-
rect solution of s. However, considering the fact that the amounts
of ink vary due to temporal changes in the press, we decided not
to enforce the coverage, and consider the coverage values as un-
known. As will be shown later, coverage information can serve to
initialize the iterative scheme. Therefore we solve,

min
s,ac,am,ay,ak

∥∥(
N(ac,am,ay,ak)− s

)∥∥2
2 s.t. Ls = m, (5)

or alternatively,

min
s,ac,am,ay,ak

∥∥(
N(ac,am,ay,ak)− s

)∥∥2
2 +λ ‖Ls−m‖2

2 . (6)

2In a way, the illuminant may be reflected in the results section of [10],
where we tune matrix L in order to fit the measurements.

Both equations try to find the spectral reflectance s that
matches the projections’ measurements m, as also minimizes the
weighted difference to one possible solution of the Neugebauer
model.

Problem (6) is equivalent to Problem (5) for a very large λ .
Smaller λ values enable some variation from the measurements
m. This was proved as most efficient in the presence of measure-
ment noise, and indeed achieved superior results than those of (5).

Numerical Solution
Problem (6) is quadratic in the unkonwn spectrum s. The

Neugebauer model is a linear combination of known and fixed
spectra. The coefficients of this linear combination are products of
the ink coverages values, or their complementaries to one (100%
coverage). As a result, Problem (6) is linear in any of the ink
coverage values ac,am,ay,ak separately. However, it is not linear
nor quadratic in all its variables together. We decided to solve
Problem (6) iteratively. Each iteration includes the solution to
two distinct problems, each updating different variables in order
to solve Problem (6). First, we solve for the spectrum s, and then
update the ink coverage values ac,am,ay,ak.

In order to describe each part in the solution we first re-
arrange the Neugebauer equation as a linear function of a vec-
tor x, whose entries are functions of the ink coverages. Let
x(ac,am,ay,ak) be a vector defined as,

x(ac,am,ay,ak) = [1, ac, am, ay, ak, (7)

acam, acay, acak, amay, amak, ayak,

acamay, acayak, acamak, amayak,acamayak]T .

Also, let PD be a matrix whose columns are the spectra of 100%
coverage of all combinations of inks, Finally, let B ∈ R16×16 be a
matrix with entries in {0,1,−1} (as in [10]), so that

N(ac,am,ay,ak) = PDBx(ac,am,ay,ak). (8)

For simplicity, we denote the function minimized in Problem
(6) as F

F(s,ac,am,ay,ak) = (9)∥∥(
PDBx(ac,am,ay,ak)− s

)∥∥2
2 +λ ‖Ls−m‖2

2 .

First, we take the partial derivation of F with respect to s,

∂F
∂ s

= −2
(
PDBx(ac,am,ay,ak)− s

)
+2λLT (Ls−m) . (10)

Solving ∂F
∂ s = 0 results,

s =
(

λLT L+ I
)(

PDBx(ac,am,ay,ak)+λLT m
)

. (11)

When considering a fixed spectrum s, and updating the coverage
values ac,am,ay,ak, it reduces to the inverse Neugebauer problem
(since the second term of F does not depend on the ink coverages),
and can be solved by any of several methods. We next describe
our solution for this problem.

The function F is quadratic in respect the the vector x, and
the partial derivative w.r.t. x,

∂F
∂x

= 2BT PT
D

(
PDBx(ac,am,ay,ak)− s

)
. (12)
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We suggest to minimize F with respect to ac,am,ay,ak in
iterations, by minimizing with respect to x, and projecting x to
the proper subspace,

x[n] = x[n−1] − ε ·BT PT
D

(
PDBx[n−1] − s

)
, (13)

x[n] = x(x[n](2),x[n](3),x[n](4),x[n](5)).

The solution is summarized in Figure 1.

Initialization: set ac,am,ay,ak, k = 1.
for k = 1,2, . . . ,K

s =
(
λLT L+(P)D Bx(ac,am,ay,ak)+λLT m

)
.

Solve the inverse Neugebauer problem, assume a
fixed s,

• Set: x[0] = x(ac,am,ay,ak).
• For j = 1,2, . . . ,J

– x[ j] = x[ j−1] − εBT PT
D ·

(
PDBx[ j−1] − s

)
,

– x[ j] = x(x[ j](2),x[ j](3),x[ j](4),x[ j](5)).
• Set: ac = x[J](2), am = x[J](3), ay = x[J](4),

ak = x[J](5)

Figure 1. Solution scheme for Problem (6)

Convergence
The above solution is simple and efficient, yet does not as-

sure a global minimum solution nor convergence. The first stage
in each iteration certainly decreases (or does not change) the cost
function. This is not guaranteed in the second stage, although can
be easily forced (by checking the cost function after each inner it-
eration). Combining those two facts, the algorithm can be forced
to converge. In practice, we found that the algorithm converges
without any additional constraints (after approximately 15 itera-
tions).

Results
We tested the above algorithm on spectra measured from

prints of HP-Indigo’s presses. We considered the 3-channel in-
line densitometer installed on HP-Indigo’s presses, whose density
filters are presented in Figure 2. First, we checked the accuracy of
spectral estimation within the same media, and then we checked
the estimation when considering the full coverage spectra PD of
one media for the Neugebauer prior, and estimating the spectrum
on another media. The density values in those two experiments
were computed from spectrophotometric measurements in order
to avoid measurement noise.

In our test we printed a full grid of 54 = 625 patches (grid of
25% in the coverage of each separation) on three different types
of papers. We used different types of papers for two main reasons.
First, in order to test the behaviour on different media, and second,
in order to estimate generalization capabilities from one media to
another.

All patches were numerically projected on the three density
filters Figure 2. The spectrum estimation was done using these
three projections, following the numerical scheme of Figure 1.

In the test we considered three sets of spectra for the Neuge-
bauer parameters PD. The three sets where measured from corre-
sponding patches of the three printed papers. We tested all patches
assuming each of the three sets of spectra (three types of papers,
each examined with three types of parameter sets, results in nine
sets of results).

The mean ΔE values and 95% errors are reported in Table
1. As expected, the results on the diagonal (spectrum estimation
where the model is taken from the same type of paper) are sub-
stantially better than the off-diagonal results. Also, we can see
a better match between the Coated and Un-Coated white papers
compared to the match with the yellowish paper. Moreover, no-
tice that assuming a white paper parameter set, in estimation of
a colored medium produces much better results than assuming a
color paper parameter set and estimating spectrum on a white pa-
per. This is understandable, as the color pigments in the colored
papers can be considered more ink, while the counter case of less
ink is impossible.

ΔE2000 / paper paper paper
95% result model (A) model (B) model (C)

(A) 0.36 / 0.59 0.41 / 0.93 1.59 / 3.89
(B) 0.56 / 0.98 0.34 / 0.66 1.25 / 2.83
(C) 0.98 / 1.75 1.02 / 1.84 0.29 / 0.59

Test 1 results: the mean error and 95% error in estimating the
spectra of 625 patches on three different types of paper - White
coated (A), White uncoated (B), Yellowish(C) - assuming three
different sets of spectra for the Neugebauer model.

Two examples are presented in Figure 3. The left figure
presents an estimation of the spectral reflectance of a coated pa-
per with model parameters taken from the coated paper while the
right figure presents an estimation of the spectral reflectance of an
uncoated paper with the coated paper model parameters.
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Figure 2. The three densitometer sensitivity functions available in HP-

Indigo’s presses.

Modifications
The solution described above suffers from two major prob-

lems,

• The Neugebauer Model is not accurate enough in represent-
ing the expected spectrum.

• Assuming the spectrum of black ink is similar to the spec-
trum of a certain combination of cyan magenta and yellow
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Figure 3. Results of the spectrum estimation algorithm described in Figure

1. The left figure presents one result printed on coated paper, and examined

assuming the spectra PD of the coated paper, and on the right the patch was

printed on a coated paper, but the parameter set of the uncoated paper was

assumed.

inks, there are many good candidates for local minima for F ,
corresponding to different {C,M,Y,K} coverages that yield
the similar spectrum. We would not want the algorithm to
choose a random coverage solution.

We address these two issues by modifying the problem
(Equation 6) and its solution scheme.

Cellular Neugebauer Model

The cellular model increases the accuracy of the spectral re-
flectance evaluation by taking into account measured spectra of
partial ink coverage [12].

The cellular model applies the regular Neugebauer model on
smaller coverage ranges. Imagine a four-dimensional cube, di-
vided into n parts in each separation, in which the spectral re-
flectance of all (n + 1)4 nodes are known. The estimation of a
value inside a cell is done by applying the regular model with
the 16 nodes that bound this cell per-se whose spectrum will now
comprise the PD matrix. To better clarify this explanation we give
an example. Lets consider we know all spectra of ink coverage 0,
0.5 and 1 of all combinations of C,M,Y,and K (n = 2, total of
34 = 81 spectra), and we define Pcx,mx,yx,kx

, where x ∈ {0,0.5,1}
as the corresponding spectra. For estimating the spectrum of
c = 0.2,m = 0.6,y = 0.3,k = 0.8 we apply the regular Neugebauer
model on the cell I = (1,2,1,2) (lower ranges in cyan and yellow,
upper ranges in magenta and black), with variables of c = 0.4,
m = 0.2, y = 0.6, k = 0.6, and the spectra that are considered for
this cell’s model parameters, PI

D, are all Pcx1 ,mx2 ,yx3 ,kx4
combina-

tion for x1 ∈ {0,0.5}, x2 ∈ {0.5,1}, x3 ∈ {0,0.5}, x4 ∈ {0.5,1}.

We use the more accurate cellular Neugebauer model as our
prior. In the first part of each iteration in Figure 1 (updating the
spectrum), only the estimation part modifies in order to fit the
cellular model (the Neugebauer coefficients are changed, and PD
turns to PI

D and includes the vertices of the cell). In the second
part, we iterate as before for finding better coverage values in the
same way, only considering the current cell. After each iteration
the new coverage values are examined, and in the case one of the
values increases to 100% or decreases to 0% the index of the cell
is changed accordingly (as do also the relevant coverage value and
model parameters, PI

D).

Results improvement by using the cellular model
We conducted two similar tests to the ones described in the

result section and recalculate with the cellular model. A figure
similar to Figure 3 is presented in Figure 4. In addition results
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Figure 4. Results of the spectrum estimation algorithm. The left figure

presents one result printed on coated paper, and examined assuming the

spectra PD of the coated paper, and on the right the patch was printed on a

coated paper, but the parameter set of the uncoated paper was assumed.

similar to Table 1 are presented in Table 2. Notice the vast im-
provement in all results compared to Table 1. This improvement
is due to the improved accuracy provided by the cellular Neuge-
bauer model.

ΔE2000 / paper paper paper
95% result model (A) model (B) model (C)

(A) 0.13 / 0.33 0.29 / 0.75 1.59 / 3.93
(B) 0.33 / 0.67 0.14 / 0.36 1.06 / 2.55
(C) 0.81 / 1.60 0.63 / 1.34 0.12 / 0.32

Test 2 results: the mean error and 95% error in estimating the
spectra of 625 patches on 3 different types of paper - White
coated (A), White uncoated (B), Yellowish(C) - assuming 3 dif-
ferent types of models for the cellular Neugebauer model.

Constraints on the solutions for the coverage
Assuming the spectrum of black ink is similar to the spec-

trum of a certain combination of cyan magenta and yellow inks,
there are infinitely many coverages {C,M,Y,K} that yield the
same spectrum.

In the scheme in Figure 1, the ink coverage combination
strongly depends on the initial solution we provide. In order to il-
lustrate this phenomena we projected one specific spectrum (esti-
mated by the cellular model, with coverage values of c = 0.3,m =
0.5,y = 0.2,k = 0.3) on the 3-channels densitometer presented in
Figure 2. We then estimated the initial spectrum and coverage
values using these projections with variable initial solutions for
the coverage. We received a wide range of coverage solutions
presented on the left side of Figure 5 (sorted by the amount of es-
timated black). It can be seen that when the estimated amount of
black increases, the estimated amounts of the other inks decrease.
The blue line in that Figure represents the error (in ΔE) between
the initial spectrum and the estimated one.

As can be seen by the estimation error graph, this depen-
dency on the initial solution for the coverage is relevant mainly to
the coverage solution values. The resulted spectra are less vary-
ing, as can also be seen in the right side of Figure 5 . There, all
resulted spectra are more or less the same, in particular, around the
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Figure 5. LEFT: The solution space for the coverage. The dots represent

the coverage ratios of each ink (sorted by the coverage of the black) when

starting with different initial conditions. The blue line represents the error in

ΔE. RIGHT: Variety of solutions for the spectrum when the initial solution for

the coverage varies. In red is the original spectrum, in blue are all estimated

spectra. In cyan are the profiles of the used densitometers. It can be seen

that the estimated spectra match the original one, in particular, around the

densitometers’ modes.

modes of the densitometers (diversity from the original spectrum
was between 0ΔE and 0.8504ΔE, with mean value of 0.1714ΔE
and standard deviation 0.2591ΔE).

We prefer to receive the coverage combination which most
resembles the input combination to the press, under the assump-
tion that the deviation of the press was minimal. For that purpose,
we updated Equation 9

F(s,ac,am,ay,ak) =
∥∥(

PDBx(ac,am,ay,ak)− s
)∥∥2

2 + (14)

μ

∥∥∥∥∥∥∥∥
W

⎛
⎜⎜⎝

⎡
⎢⎢⎣

ac

am

ay

ak

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

a0
c

a0
m

a0
y

a0
k

⎤
⎥⎥⎦
⎞
⎟⎟⎠

∥∥∥∥∥∥∥∥

2

2

+λ ‖Ls−m‖2
2 .

where a0
c ,a

0
m,a0

y ,a
0
k are the input coverage values to the press, and

W is a diagonal weight matrix that weights the possibility of de-
viation in each separation. The weight μ for the additional term
should be very small as we would not want it to affect the mini-
mization of the other two terms.

Combining this in our numerical scheme, together with as-
suming the cellular Neugebauer model, results the solution de-
scribed in details in [10].

In addition, when one of the inks was not used at all (know-
ing the combination of colors the press used) we incorporate this
knowledge in our solution, and refer to a restricted Neugebauer
model with lower dimension. In these cases we may expect a
much more accurate coverage estimation. Limiting the dimen-
sion of the model and solving the restricted version is a relatively
simple generalization.

Summary
We have described a novel algorithm for spectral reflectance

estimation from simple measurements using color model as prior.
The algorithm also provides estimation of the amounts of ink that
were laid on the paper. Further results indicate stability to uncer-
tainty in measurement device and to measurement noise.
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