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Abstract 
A model for high dynamic range (HDR) image reproduction 

is proposed in this research. The main concept behind this model is 
to perform image reproduction based on the equivalence of 
perceived visual contrast for every pixel. A relative perceived 
visual contrast (RPVC) function is derived in this research from 
paper published by Burkhardt et al. to provide the base for visual 
matching between the HDR scene and the reproduced image in low 
dynamic range (LDR) medium. The adapting background 
luminance and physical contrast are the control parameters for 
this function. Many crucial features (for example bilateral type 
filter and IPT color spacing) found in prior HDR models (like 
iCAM06 etc.) are also incorporated in this model. Psychophysical 
experiment was performed in a specially configured setting to 
compare a real HDR scene with reproduction images on LDR 
monitor. The reproduced LDR images by six other HDR models 
were compared by pair comparison method. The results indicate 
that while iCAM06 has better performance in overall and bright 
region, this RPVC model has better performance in the dark 
region. 

Introduction  
High dynamic range (HDR) image reproduction has been 

explored by both the computer graphics community and the 
imaging science community for some time. One early HDR 
publication from the computer graphics community was presented 
by Miller and colleagues in 1984 at SIGGRAPH [1]. Consequent 
works are referred to as tone mapping operators (TMO) which 
include computing algorithms for processing graphical data.  

In the imaging science community, Land and McCann 
proposed the Retinex theory way back in 1967 with the concept of 
center/surround spatially opponent operation [2]. Recently, the 
Retinex theory has been applied in several HDR image 
reproduction models [3, 4]. On the other hand, after CIE 
recommended both CIELAB and CIELUV as uniform color spaces 
in 1976, color appearance models have been an actively researched 
area, resulting the recommendation of CIECAM97 and 
consequently CIECAM02 color appearance models. However, it 
was known that these models only handle the solid color patch 
type stimulus. Meanwhile, S-CIELAB was proposed to include the 
consideration of spatial property for image color difference by 
incorporating spatial filtering [5]. Fairchild proposed a concept of 
image appearance model handling the spatial functionality for the 
stimuli in pictorial image [6, 7]. As a result, iCAM and the 
enhanced model, iCAM06 were proposed and applied in HDR 
image reproduction with all the color appearance functionalities 
carried on from the long-researched CIE color appearance models 
[8]. Most references to these prior HDR image processing models 
and their characteristics can be found in [9] as listed in Table 1. 

Table 1: List of the prior HDR image processing models [9]. 
Time Authors Characteristics 

1984 Miller Mapping by constant brightness 
ratio 

1993 Tumblin-
Rushmeier 

Mapping brightness value in 
suprathreshold level 

1993 Chiu First spatially-varying operator 

1994 Ward Match contrast sensitivity in 
photopic threshold  

1996 Ferwerda Match contrast sensitivity in 
scotopic visibility 

1997 Ward Larson Histogram mapping 

1998 Pattanik Multiscale for threshold and 
suprathreshold vision 

2002 Ashikhmin Mapping by local contrast 
equivalence 

2002 Durand-Dorsey Fast bilateral filter 
2002 Fairchild iCAM image appearance 

2002 Fattal Attenuating large gradient for 
compression 

2002 Kotera Adaptive scale-gain MSR 
Retinex 

2002 Reinhard Photographic tone mapping 

2005 Reinhard-
Devlin  Photoreceptor model  

2007 Wang Integrated surround Retinex 
2007 Kuang iCAM06 image appearance 

 
There have been many publications regarding the evaluation 

of HDR image reproduction models [10, 11, 12, 13, 8, 14, 15]. The 
iCAM06 model consistently showed better performance than other 
models after its modifications from the previous iCAM model. 
These modifications include a bilateral filter, photoreceptor 
response function and luminance dependent local contrast 
enhancement [8]. In the mean time, both Ledda [11] and Yoshida 
[13] indicated that when conducting psychophysical experiments 
to compare these models, subjects behaved differently with and 
without referencing image. Furthermore, when a real scene is 
present as a reference, the fast bilateral filtering method seems to 
generate higher contrast and more detail visibility than in the 
reference images [11, 13]. It is also noted that iCAM model 
reproduced the image with less local contrast and colorfulness 
compared with original scenes [8]. Contrast attribute seems to be 
the area that deserves further deliberation. 

It is the primary focus of this study to further contemplate the 
human visual contrast processing capability into existing HDR 
models to make the appearance of the reproduced LDR image 
closer to the real HDR scene. Contrast mapping function and 
necessary features found in the prior HDR models (especially 
iCAM06) are incorporated together to make a less complicated 
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HDR model that also handles contrast attribute better for HDR 
image reproduction. 

Relative Perceived Visual Contrast  
The luminance that we encounter daily ranges from 100,000 

cd/m2 for bright sunlight, to 100 cd/m2 for indoors or to 0.001 
cd/m2 under dark starlight [16, 17]. This is a very wide range of 
luminance, and the human eyes are capable to adapt to it. 
However, such wide dynamic range is generally beyond the signal 
range that current photographic material nor digital camera’s 
sensor can record at one time. The ability for human visual system 
to cope with such high dynamic range of luminance is well 
explained by Wandell [18]: 

“The most important information represented by the visual 
pathways is the image contrast, not the absolute light level. The 
image contrast is the ratio of the local intensity and the average 
image intensity. To represent the image contrast, neurons in the 
visual pathway change their sensitivity to compensate for changes 
in the mean illumination level. This process, call visual 
adaptation…” 

Burkhardt et al. [19] published a paper in 1984 studying the 
symmetry and constancy in the perception of negative and positive 
luminance contrast at the suprathreshold level. The perceived 
difference between a rectangular bar and its background was 
defined as the perceived contrast. The results show a nearly 
symmetrical relation between the perception of negative and 
positive contrast that is largely invariant for background luminance 
levels from 0.017 to 200 cd/m2. Crucial information is also 
revealed in the paper – the data describes the relation between 
physical contrast (PC) and corresponding perceived visual contrast 
(VC) for rectangular bars viewed with varying background 
luminance, which shows a full feature of the perceived visual 
contrast at suprathreshold level. Unfortunately, only one curve 
(luminance at 200 cd/m2) in the original figure was based on fitted 
data points, the rest of the curves were drawn by eye in the original 
paper. However, these data imply the human visual contrast 
response for those luminance levels, which can serve as the 
mapping function between physical contrast and perceived visual 
contrast when proper numerical function can be derived. 

As listed in Table 2, the regression results from the estimated 
data points in Burkhardt’s paper, the relation between the physical 
contrast (PC) and the visual contrast (VC) are explained well for 
different levels of background luminance in a general form as: 

VC = offset + scalar * Log(PC) (1) 
 

Table 2: Regression results between physical contrast and 
visual contrast at different levels of background luminance for 
estimated data from Burkhardt’s paper. 

Background 
Luminance 

(cd/m2) 
Offset  Scalar R2 

0.017  0.56584  0.42340  0.994 

0.170  0.60598  0.46576  0.998 

1.550  0.68856  0.55212  0.982 

17.000  0.77979  0.64606  0.959 

200.000  0.87780  0.74729  0.932 
 
A very important commonality between the findings of Van 

Nes [20] and Burkhardt [19] is that the human contrast perception 
is influenced by the background luminance levels, which trigger 
the thought to further model the values in the terms of offset and 
scalar in Table 2 as two separate functions of the background 
luminance values. The results for the two separate regressions of 
the offset term (R2= 0.984) and the scalar term (R2= 0.985) are: 

Predicted Offset = 0.68495 + 0.078793 * Log(Luminance) (2) 

Predicted Scalar = 0.54758 + 0.081779 * Log(Luminance) (3) 
 

A relative perceived visual contrast (RPVC) function can be 
therefore summarized in one single equation with two control 
parameters -- input physical contrast (PC) and background 
luminance (L

B
) as: 

VC=(0.68495+0.07879*Log(L
B
))+(0.54758+0.08177*Log 

(L
B
))*Log(PC) (4) 

 
Burkhardt’s original paper sets the output perceived visual 

contrast at 1.0 for the input physical contrast at 1.0 for background 
luminance at 200 cd/m2 which is too limited for a real-life HDR 
image. Assuming the maximum luminance to be 1,000,000 cd/m2 
and the minimum luminance at 0.001 d/m2 (for a range of 9 log 
units), the maximum physical contrast can be 0.99999 [19]. With 
some constrain and clipping on the extended boundary condition, a 
new concept of Relative Perceived Visual Contrast (RPVC) based 
on Burkhardt’s data set is proposed as the following equation: 

RPVC(x, y) = (0.68495 + 0.078793 * Log(L
B
(x, y))) + 

(0.54758 + 0.081779 * Log(L
B
(x, y))) * Log((Lmax(x, y)-Lmin(x, 

y))/(Lmax(x, y)+Lmin(x, y))) – 0.15770 (5) 
 

Where L
B
(x, y) is the adapting background luminance, Lmax and 

Lmin are the central and background luminance respectively 
whichever are larger and smaller. The estimated values of the 
RPVC function are shown as Fig. 1. Therefore given physical 
contrast ※(X-axis) under certain adaptation luminance level, a 
corresponding relative perceived visual contrast value can be 
found (on Y-axis). When mapping it back from Y-axis to X-axis, 
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the same perceived visual contrast value can be found under 
different levels of adaptation luminance at different physical 
contrast values respectively. In a way, to keep the perceived visual 
contrast consistent when mapping from higher to lower adapting 
luminance, the physical contrast has to be increased which will 
compensate the not-enough-visual-contrast issue commonly seen 
when mapping very high luminance area down to lower luminance 
area. Therefore, this RPVC function can simulate the Stevens 
effect – increase in perceived image contrast with luminance. 
When mapping up from extremely low adapting luminance to 
moderate low luminance while keeping the perceived visual 
contrast consistent, the physical contrast has to be decreased which 
would solve the too-much-visual-contrast issue commonly seen in 
reproducing the darker region. 

 
Figure 1. Estimated relative perceived visual contrast curves (vs. physical 
contrast) for luminance levels ranged from 0.001 cd/m2 to 1,000,000 cd/m2 

HDR with RPVC Function 
Prior psychophysical experiments have demonstrated that for 

simple configurations, “cone contrast” (the ratios of within-type 
cone excitation) between a target surface (center) and its 
immediate area (background) largely determines the color 
appearance. [21, 22, 23]. Based on the concept of “constancy of 
cone contrast” Hurlbert and Wolf [23] point out the observation 
that equal cone contrasts have approximately equal appearance. 
This matches with an earlier finding by Chichilnisky and Wandell 
[22] that equal cone (additive) increments against different 
backgrounds have equal appearance, subject to a background-
dependent gain. In other words, even though the center-
background ratios are not the same at different background 
luminance levels, the appearances can be still equal due to the 
adjustment role introduced by the different gain values. This is the 
main concept in this visual contrast mapping model that using the 
RPVC function to perform the tone mapping between HDR and 
LDR scene. Therefore for each pixel within a HDR image, the 
central stimulus S

C
(x, y) and its background stimulus S

 B
(x, y) as 

well as the adapting background luminance L
B
(x, y) are sufficient 

to determine its RPVC(x, y) value. When mapping to a known 
LDR reproduction medium, after a linear mapping on its 
background stimulus S’

 B
(x, y)and adapting background luminance 

L’
B
(x, y), the reverse mapping through the RPVC function can 

back calculate the LDR central stimulus S’
C
(x, y) which is the 

reproduced image on the LDR medium.  
Several important features learned from the prior published 

HDR image processing models, especially iCAM06 model are 
integrated into this current model. The initial dynamic range 
compression is done in density (log) domain. Bilateral-type filter is 
also used to generate the background stimulus for the HDR scene 
since it is needed to preserve the edge detail and in the mean time 
create the averaged scene background. A very special feature in 
this model is to perfrom the RPVC mapping in LMS space, not the 
regular XYZ space, since LMS is closer to the cone contrast 
situation. There is also surround luminannce dependence 
correction in IPT space to account for Bartleson-Breneman and 
Hunt effects. The complete process flow is summarized as: 
1. Read in the absolute colorimetric values from an HDR file 

as the original scene image. 
2. A logarithmic transformation is taken on the input image’s 

absolute XYZ values to establish the reference scene image. 
Histogram analysis is applied on the reference scene image 
to locate the maximum and minimum bounds of the scene 
dynamic range. They are taken from 99.8% and 0.2% 
accumulated percentile to avoid noise. 

3. A scaling factor (sf) is computed by the ratio of the dynamic 
ranges of luminance (Y) between the scene(S) and the 
reproduced display medium (D) in log space. A linear 
mapping in log space is performed for the image from the 
scene range to the range of the reproduction medium. A 
white point mapping is also included by setting the 
maximum values as the base for scaling and adding back the 
medium white point as offset. 

4. Transform the original scene image (CIE XYZ values) to 
the LMS space to generate the central stimulus (Sc) of the 
scene. 

5. Process the original scene image signals in the LMS space 
with the bilateral (range-domain) filter [14] to generate the 
spatially adapted background stimulus (S

B
) of the scene. 

6. Compute the adapting background luminance (L
B
) of the 

scene by converting the spatially adapted background 
stimulus (S

B
) of the scene back to absolute luminance unit. 

7. Transform the projected medium value (in log XYZ space) 
back to 10 base value to generate the projected adapting 
background luminance (L’

B
) on the reproduction medium.  

8. Transform back the projected medium value from XYZ 
back to the LMS space to form the background stimulus 
(S’

B
) on the reproduced medium.  

9. With the pre-calculated values for 1. adapting background 
luminance of the scene (L

B
), 2. adapted background stimulus 

of the scene (S
B
), 3. central stimulus of the scene (S

C
), 4. 

projected adapting background luminance on the 
reproduction medium (L’

B
), and 5. projected background 

stimulus on the reproduction medium (S’
B
), the RPVC 

function can be used to calculate the central stimulus (S’
C
) 

of the reproduced LDR image in the LMS space as: 

RPVC
i
 ((L

B
(x, y), S

 iB
 (x, y), S

 iC
(x, y)) = RPVC

i
 ((L’

B
(x, y), S’

 

iB
 (x, y), S’

 iC
(x, y)) (6) 
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10. Compensate S’
C
 (x, y) for the surround luminance influence 

in the IPT space. 
11. Convert from IPT space to LMS and to XYZ colorimetric 

space. Convert the reproduced LDR image to the device-
dependent signals of the output medium for display. 

Experimental 
A special configuration was used to create high dynamic 

range condition for exact visual match between real scene and 
reproduced LDR display images. Two cool-white florescent light 
sets in different illumination levels were used aside (similar to 45/0 
viewing geometry) separately to generate bright and dark sides for 
high dynamic range scene. A black board was inserted between the 
two sides and parallel to the observer’s viewing direction to reduce 
the light leaking from the bright side. A Minolta CS-1000 was used 
to measure the luminance. The luminance reading on the brightest 
patch of a Kodak Q-13 gray scale was 317.8 cd/m2 on the bright 
side. On the dark side, the luminance reading on the brightest patch 
of a Kodak Q-13 gray scale was 3.458 cd/m2. Part of the lighting 
configuration is shown in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The lighting configuration used in this experiment. The cool-white 
florescent light set on the left side provides much higher illumination than the 
one on the far right side (not seen on the right). 

A Canon 5D digital camera with a Canon EF 50mm/2.8 
macro lens was used. Three pictures in 1/12, 1/3 and 1.3 seconds 
exposures at f8.0 were taken at ISO 100. Adobe Photoshop CS3 
was used to generate the .hdr file to be processed by a MATLAB 
program. These original images are shown in Fig 3. An Eizo 
ColorEdge CG21 21-inch LCD monitor at D65 white point and 
Gamma 2.2 setting was used to display the test images.  

Six other HDR image reproduction models (1. iCAM06 [7, 8], 
2. local contrast [24], 3. bilateral filtering [25], 4. photographic 
operator [26], 5. photoreceptor [27], 6. Rahman Retinex [28, 29] 
and this RPVC model were used to generate the test images. The 
MATLAB program from RIT’s web site was used to process the 
file for iCAM06. The executable programs from the attached CD  

 
 
 
 
 
      
 
 
 

Figure 3. The original images: (1) under (2) normal (3) over exposure. 

in Reinhard et al’s publication [9] were used for the other five 
models. All the seven reproduced images are shown in Fig. 4. 
 

 

 
Figure 4. The reproduced HDR images (1. iCAM06 (top left), 2. Local 
Contrast, 3. Bilateral Filtering, 4. Photographic Operator, 5. Photoreceptor, 6. 
Rahman Retinex, and 7. RPVC model). 

Forty-one observers participated in the visual assessment. 
Each of them was instructed to pick one of the two images on the 
LCD monitor for which is more resemble visually to the real scene 
in three separated rounds. The criteria given for all three rounds 
are: (1) overall reproduction, (2) reproduction in the bright region 
and (3) reproduction in the dark region. 

Results and Discussions  
The results of the pair comparison for all three rounds (overall, 

bright area and dark area ) are shown in Table 3. 
 
Table 3: List of the resulting Z-scores for all three tests 

No. HDR Model 
Z- Scores 

Overall Bright area Dark area

1 iCAM06 1.944 1.568 0.799 

2 Local contrast 0.670 0.747 0.234 

3 Bilateral filtering -1.280 -1.066 -0.577 

4 Photographic operator -2.052 -1.779 -1.115 

5 Photoreceptor -0.611 -0.640 -0.015 

6 Rahman Retinex 0.019 0.033 -0.377 

7 RPVC 1.310 1.136 1.050 
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Figure 5. Comparison results for the overall reproduction. 

 
Figure 6. Comparison results for the bright region.  

 
Figure 7. Comparison results for the dark region.  

 
Figure 8. Resulting Z-scores for all three rounds of  tests. The HDR models 
used are: (1) iCAM06, (2) Local Contrast, (3) Bilateral Filtering, (4) 
Photographic Operator, (5) Photoreceptor, (6) Rahman Retinex and (7) 
RPVC. 

As shown, the first HDR model (iCAM06) has the best 
overall performance with the 7th model (RPVC) as the second. 
The performance on the bright region shows a very similar trend as 
the overall performance where the iCAM06 model has the best 
performance and the RPVC model as the second. However, when 
evaluating the dark region, the RPVC model has the best 
performance while the iCAM06 model comes second. 

In the mean time, local contrast model (model No. 2) 
consistently has the third place on all three rounds, which re-
confirms the trend that contrast attribute plays an important role in 
the HDR image reproduction. Moreover, the photoreceptor model 
(model no. 5) has better performance in dark region than in the 
bright region, which implies the influence of the photoreceptor’s 
activity is also valid in the dark region. Even though in designing 
the RPVC model, the concerns about local contrast and 
photoreceptor are similarly incorporated, maybe it is the 
consideration of processing signals in the LMS color space or 
image enhancement in the IPT color space makes the difference 
than the earlier HDR models, like local contrast operator (model 
No. 2) and photoreceptor model (model No. 5).  

The nonlinear tone compression functions for iCAM06 is 
similar to those in CIECAM02 with slightly modified user-
controllable power value in a range from 0.6 to 0.85 which is still 
fixed at a specific value [8]. However, learning from the concept 
like the transducer function [20, 30], the RPVC model would 
change the mapping merit according to the adapting luminance 
levels. It may be this reason that RPVC model performs better in 
the dark region. Meanwhile, the iCAM06 model has more 
elaborate handling in the surround influence, which might 
contribute the reason why iCAM06 model performs better than the 
RPVC model in the bright region. Furthermore the original 
Burkhardt’s data only had the background luminance level up to 
200 cd/m2, it will need further experiment to explore the model 
performance and possible enhancement in higher luminance levels. 

Conclusions 
There are two main characteristics associated with the 

processing of HDR image. The first is the reduction of the dynamic 
range between the scene and the reproduction medium. The second 
is the change of the visual adaptation status due to the change of 
the dynamic range. This model is based on the philosophy that the 
perceived visual contrast must be kept consistent in different visual 
adaptation mode so that the reproduced image can be perceived to 
be the same as the original scene. The visual contrast matching 
between the HDR scene and the reproduced LDR image is based 
on the relative perceived visual contrast (RPVC) function derived 
in this study from published paper by Burkhardt et al. in 1984, in 
which adapting background luminance and local physical contrast 
are its primary control parameters. By mapping through the RPVC 
function, different local physical contrast values can generate 
equivalent visual contrast and for every pixel the central signal of 
the reproduction image can be back calculated. Special processes 
like bilateral filter, tone compression in log space and surround 
compensation in IPT space learned from prior HDR image models 
are also incorporated in this RPVC model. 

Six other HDR image reproduction models, (1) iCAM06, (2) 
local contrast, (3) bilateral filtering, (4) photographic operator, (5) 
photoreceptor and (6) Rahman Retinex were tested along with this 
RPVC model. A special controlled lighting environment was 
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configured to perform the test. The iCAM06 model had the best 
performance for overall reproduction and reproduction in the 
bright region, while the RPVC model came second. However in 
reproduction of the dark region, the RPVC model had the best 
performance and the iCAM06 model came second. In the mean 
time, the local contrast model always came third. The results 
indicate that the influence of visual contrast is an important factor 
to be considered. The ability to compensate the perceived visual 
contrast through the RPVC function proposed in this study can be 
a vital concept for the HDR image reproduction process. 
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