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Abstract
The standard approach for the conversion of colour images

to greyscale is to remove their chromatic content and keep only
the brightness information. However, with this method the detail
at equiluminant edges disappears. In this paper, we propose a
colour-to-greyscale transformation that preserves details and, at
the same time, enhances the output. We consider Socolinsky and
Wolff’s technique that codes the contrast information of the three
colour channels in a single gradient field. Our contribution is
to show how retinex-type algorithms produce a greyscale image
by integrating such a gradient. Our approach also addresses the
question of integrability where the gradient field is non-integrable
(causing the greyscale to have smears and bending artefacts). We
show how by diminishing the saturation of the original input we
not only reduce the integrability problem but, with enhancement,
keep the perceived colour contrast in a greyscale reproduction.

Introduction
It is more and more common to capture images using colour

digital cameras, and to reproduce them on colour monitors or

through colour inkjet printers. However, it is also common that

they are reproduced on black and white devices, such as printers,

photocopiers, fax machines; moreover, often newspapers print

their pages in black and white for cost reasons.

In order to perform the necessary conversion, the colour im-

ages are deprived of their chromatic content, thus what remains

is only the brightness information. Although this approach of-

ten produces acceptable results, it is desirable to have a better

greyscale reproduction, that preserves more detail in those equi-

luminant areas where some colour contrast is present. Not only

this would allow a more pleasant reproduction through black and

white devices, it might also have applications as an aid for colour

blind people.

Although researchers have recently devised different meth-

ods to tackle this problem [8, 9, 13, 15], there is a common

basis in what has been done. A lot of effort was put in defin-

ing a measure for colour differences that could then be mapped

into greyscale differences in the final image. The most general

and mathematically well-founded contribution in this sense is the

work of Socolinsky and Wolff [16]: they code the local colour

contrast by defining a gradient field, that can be integrated to ob-

tain a greyscale image. This is the point where we start in this

paper: first of all we will discuss Socolinsky and Wolff’s defini-

tion of the gradient field for multichannel images. Then we will

briefly overview the principles behind retinex algorithms, and we

will see how to use them to integrate a gradient field, thus obtain-

ing a greyscale image. After that we will see how adjusting the

saturation of the original colour image affects the integrability of

the gradient field, and finally we will show some results of our

colour-to-greyscale method.

Colour contrast
Di Zenzo [3] and, some years later, Socolinsky and Wolff

[16] introduced an elegant mathematical formulation of the con-

trast for multichannel images. In their work, Socolinsky and

Wolff define a single gradient field from an image of more chan-

nels. A colour image can be represented as a function f : Ω ⊂
R

2 → R
3, mapping a region of the 2D plane R

2 to a colour space

in R
3. The gradient of the image at a point (x0,y0) is given by the

Jacobian matrix

J =

⎡
⎢⎢⎣

∂ f1

∂x
∂ f1

∂y
∂ f2

∂x
∂ f2

∂y
∂ f3

∂x
∂ f3

∂y

⎤
⎥⎥⎦ , (1)

where the function fi(x,y) represents the ith colour channel. The

matrix J can be used to compute the gradient in an arbitrary di-

rection d = [cosθ ,sinθ ]T as Jd, whose magnitude is given by

m = dT JT Jd. (2)

The matrix JT J is called the structure tensor, and can be used

to find the direction d where the magnitude m of the gradient is

the largest. Such direction, as outlined in [16], is given by the

eigenvector of the matrix JT J corresponding to the largest eigen-

value, whose square root is then its magnitude. Unfortunately,

this method does not give any information about the sign of the

gradient: this problem is serious, because it is the sign that deter-

mines whether the gradient is going from a dark to a light area, or

the other way round. Thus, we can take the sign from the lumi-

nance image, or the �2-norm luminance; in our work we use the

�∞-norm, that is the max(R,G,B) image, for the sign assignment.

Again, in all these cases there could be equiluminant areas, even

in a �2 or �∞ sense. Drew et al. [4] investigated in detail this prob-

lem, trying to address the ordering with different �p-norms and

with a Markov relaxation technique, but the discussion of these

issues goes beyond the purpose of this paper.

Integration of the gradient field
The main contribution of Socolinsky and Wolff’s work, com-

pared to Di Zenzo’s, is that they suggest integrating this gra-

dient field in order to get a greyscale image that can be visu-

alised. Their approach, which is more general than the colour-

to-greyscale problem, was devised for applications such as dis-

playing satellite images, that are taken with more than three chan-

nels (not necessarily in visible light). The main idea is to see

the integration problem as the solution of a Poisson equation: if
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the gradient obtained from a colour image I is G = (Gx,Gy), the

greyscale image L is the solution to the equation

∇2L =
∂Gx

∂x
+

∂Gy

∂y
, (3)

where ∇2 is the Laplacian operator. However, very often the gra-

dient field G is not integrable, that is to say that there is not such

an image L whose gradient is G. Socolinsky and Wolff suggest in-

tegrating the gradient field with an iterative relaxation method, in

order to obtain an approximation to the solution in a least-squares

sense. Others have approached the same problem, although for

different applications, with other solutions: for example, Fat-

tal et al. [5] suggest solving the Poisson equation from a non-

integrable gradient field using multigrid methods (see e.g. [14]),

while Borenstein [1] uses a method based on the Fourier trans-

form.

Retinex algorithms
Retinex algorithms, to some extent, consist of the separa-

tion of illumination from reflectance. Land and McCann [11]

suggest that the perception of colour is mainly due to the latter,

rather than the former. In their paper [11], they consider a Mon-

drian scene and a piece-wise linear curve across different patches,

thus for the moment we can consider a one-dimensional image

i(x) = r(x)l(x), where r(x) represents the reflectance and l(x) the

illumination. Land and McCann assume that across an image the

reflectance varies sharply at the border between objects, whereas

the illumination changes smoothly. Therefore, in order to sepa-

rate the two effects at a certain edge, the following ratio between

areas x2 and x1 should be considered:

i(x2)
i(x1)

=
r(x2)l(x2)
r(x1)l(x1)

≈ r(x2)
r(x1)

. (4)

The last equality in equation (4) follows from the fact that l(x2)≈
l(x1). However, the human eye cannot compare directly two areas

of the scene that lie very far away from each other. Thus, Land

and McCann propose to multiply the ratios of all the boundaries

between the two areas:

i(xn)
i(x1)

=
i(x2)
i(x1)

· i(x3)
i(x2)

· . . . · i(xn)
i(xn−1)

≈ r(xn)
r(x1)

. (5)

In practice, such a sequence of products and divisions is computa-

tionally very expensive (especially in the years when this method

was devised), hence it is wiser to consider the logarithm of the

image in order to transform products into sums and divisions into

differences, so if I(x) = log i(x), equation (5) becomes

log
i(xn)
i(x1)

= log i(xn)− log i(x1) = I(xn)− I(x1) =

=
(
I(x2)− I(x1)

)
+

(
I(x3)− I(x2)

)
+ . . .+

(
I(xn)− I(xn−1)

)
.

(6)

Borenstein [1] suggests that the local differences approximate the

derivative of I(x), and summing these approximates their integra-

tion.

Over the years, several variations of the original retinex for-

mulation have been proposed. Here are the main operations in

the different versions of the algorithm, apart from the ratio-and-

product step just described.

• Threshold operation. If the purpose of retinex is to sepa-

rate the contribution of the illumination from that of the re-

flectance, working under the assumption that the illumina-

tion changes very slowly across the scene, when a ratio is

very close to 1 it is forced to assume a value of 1. In the

logarithm of the image, the ratio step becomes δ (I(xk+1)−
I(xk)), where

δ =

{
0 if |I(xk+1)− I(xk)| ≤ τ
1 if |I(xk+1)− I(xk)| > τ

(7)

with τ threshold.

• Reset operation. In order to estimate more accurately the

reflectance of a certain area, this has to be compared to a

very bright area within the scene, that is assumed to have

reflectance 1. However, the position of such an area is un-

known, therefore it can happen that the sequence of ratios

comes across a brighter area than its starting point. If this

is the case, the overall product computed so far will have

value greater than 1 (or, in logarithm, the overall sum will

be greater than 0), thus a reset is triggered and the sequence

of ratios restarts assuming reflectance 1 in the current posi-

tion.

• Average operation. When estimating the reflectance of an

area in, retinex starts from a point i1 and performs ratios and

products along some curve that leads to in. This idea can

be extended by considering several curves starting from dif-

ferent areas: in this case, it is necessary to average (in loga-

rithm space) the different reflectances obtained from the dif-

ferent curves. Frankle and McCann [6] introduced a differ-

ent concept of average: every time a certain area is reached,

the computed reflectance is averaged with the reflectance

computed on the previous iteration.

So far, for the sake of simplicity we have referred to path

based retinex algorithms, that in some sense are one-dimensional.

In the literature there are several examples of two-dimensional

retinex. For example, Frankle and McCann [6] consider differ-

ences between pixels at different and increasingly small distances,

separating the horizontal and vertical directions. As the same

pixels are taken into consideration more than once, Frankle and

McCann introduced the aforementioned averaging step. McCann

[12], using a slightly different approach, considers on each pixel

the ratios with the eight neighbouring pixels, and the operation

is repeated in several scales of the image. In the limit (infinite

steps), Frankle and McCann’s algorithm returns the original im-

age (see Brainard and Wandell [2]). For a smaller number of steps

per scale, it tends to enhance the detail in the image.

Integrating a gradient field using retinex
In this paper, we propose to integrate with a retinex algo-

rithm the gradient field G = (Gx,Gy) obtained with Socolinsky

and Wolff’s method. We base our work on Frankle and McCann’s

retinex and its implementation by Funt et al. [7]. Our technique

consists, first of all, in computing the gradient of an input colour

image according to Socolinsky and Wolff’s method. As retinex

works with logarithms, this operation is also performed on the

logarithm of the input image. At this point, we have a gradi-

ent field G = (Gx,Gy) that substitutes the retinex ratio step. In
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Frankle and McCann’s retinex it is straightforward to operate this

substitution, because it separates the two directions in its ratio-

product computation. As mentioned before, this algorithm con-

siders the ratios of pixels at different distances from each other;

however, our gradient is computed between neighbouring pixels.

In order to overcome this limitation, in our implementation we

approximate long-distance x or y derivatives by summing local

derivatives along paths in the x and y directions respectively. For

example, if Gx is in a form similar to the following:

Gx = [I2 − I1, I3 − I2, I4 − I3, . . . , In − In−1]. (8)

and we want to know the difference I4 − I1, we just need to add

the first three coefficients in equation (8). This statement is true

if G is integrable; but as we know, this is not always the case for

gradients obtained with Socolinsky and Wolff’s method.

Once the ratio step has been substituted with the de-

scribed procedure, the rest of the algorithm follows Frankle and

McCann’s retinex: starting from a white image, we proceed with

the product step between different parts of the gradient, with the

reset step and finally we average with the previously computed

product.

(a) Colour image (b) Retinex integrated grescale

Figure 1. A colour image (left) and its greyscale (right) version obtained

integrating the Socolinsky and Wolff gradient with Frankle and McCann’s

retinex. In presence of a large magnitude in the gradient field, retinex pro-

duces a halo artefact, that in this case is so heavy that hides completely a

part of the image.

What happens if we apply this method directly to a colour

image? In many cases the output image is poor. In figure 1 we

show an example where we do not obtain the desired effect. Im-

age 1(a) is taken from the Kodak true colour image suite [10], and

image 1(b) is the straight integration of its Socolinsky and Wolff

gradient using four iterations of Frankle and McCann’s retinex.

What we can see there is a huge halo artefact that expands from

the first hat on the left across the whole image: this is due to a

very large magnitude in the gradient field. In the next section we

will discuss this problem and our approach to tackle it.

Reducing saturation to improve integrability
When taking the logarithm of an image, zero values are prob-

lematic: log0 is not defined, thus we just replace it with the log-

arithm of a small number (e.g. log(10−6)) in the pixels with zero

value, resulting in a relatively large negative number. In RGB,

very saturated colours have a high value in one or two channels,

and a very low one in the others. Thus, on boundaries involv-

ing very saturated colours, the Jacobian matrix J of equation (1)

has very large coefficients, therefore the eigenvalues of JT J will

be very large as well (again, when operating with logarithms).

In order to tackle this issue, we simply reduce the saturation of

the input image. In our implementation, we convert the image to

the HSV colour space, decrease the saturation by multiplying its

channel by some coefficient smaller than 1, and then switch back

to RGB. As default, we reduce the saturation to 50%, because we

have seen that this gives in general good results. This approach

brings the input image somewhat closer to its luminance version

(that would have zero saturation), yet preserves most of its chro-

matic information. Moreover, the slightly reduced colour contrast

will be “put-back” in the enhancement step. When computing

Socolinsky and Wolff’s gradient of the logarithm of a desaturated

image, the magnitude issue is reduced, leaving a much smoother

gradient. In figure 2(b) we can see how the unwanted dark area

of figure 1(b) completely disappears. The difference between the

two images is only the saturation reduction of the input: the inte-

gration method is exactly the same (four iterations of Frankle and

McCann’s retinex).

(a) NTSC luminance image (b) Retinex integrated greyscale

Figure 2. Left: NTSC luminance image of the image 1(a). Right: Frankle

and McCann’s retinex integration of Socolinsky and Wolff’s gradient obtained

from the same image with saturation reduced to 25%.

In figure 2 we can see a comparison between the luminance

image of 1(a) and its greyscale version obtained with the method

we are proposing. We can see how the colour gradient emphasises

the difference between the hats, which is completely lost in the lu-

minance image. Moreover, image 2(b) looks enhanced, meaning

that it shows the typical features of retinex processing, including

unfortunately its drawbacks: just by the first two hats there are

some dark halos.

Results
We have tested our method on the Kodak colour image

dataset [10], and on a few test images from Gooch et al. [8] and

Rasche et al. [15]. In general, our proposed method tends to pre-

serve the colour contrast, plus it introduces some enhancement to

the input images. Thus the output is very different from a lumi-

nance image processed by some retinex algorithm, as shown for

example in figure 7. Note that this is equivalent to an extreme

application of the saturation reduction to our method: when satu-

ration goes to zero, the result is a luminance image.

In the presence of inconsistencies in the gradient field, which

are a source of integration errors, our retinex method tends to

produce halos around the non-integrable areas, as shown in fig-

ure 2(b); however, in general, images tend to be free from arte-

facts. In figures 3, 4 and 6 we can see some examples of greyscale

images produced with our method, compared to their luminance

greyscale. As mentioned before, we can see clearly the enhance-

ment (especially in figure 3).
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(a) Colour image (b) Luminance (c) Our method with 50% saturation

Figure 3. In the luminance image, the colour contrast between the leaves and the berries completely disappears. Our method instead preserves it, the result

of this being that the berries look brighter than the leaves around them. Moreover, the image looks enhanced.

(a) Colour image (b) Luminance (c) Our method with 50% saturation

Figure 4. Our method clearly marks the difference between the flower in the middle and the leaves around it, that completely disappears in the luminance

image. The enhancement is quite clear on the leaves, where some details pops out even in comparison with the colour image.

(a) Colour image (b) Luminance (c) Our method with 50% sat-
uration

Figure 5. In this example our method shows a clear difference between areas of different colours, that disappears in the luminance image. Moreover, looking

at the texture of the grass, we can see the enhancement introduced by our method.

Conclusion and future work
In this paper we have introduced a colour-to-greyscale

method that exploits retinex features in order to integrate and en-

hance a contrast preserving gradient field. We have shown how

its output images preserve detail that is lost in their luminance

greyscale. Further, although our approach can introduce artefacts

(such as halos) when the gradient field is non-integrable, these can

be removed by reducing the saturation in the original image.

We think that our method is very promising, and as part of

its further development there are several aspects requiring further

attention. First, in the literature there are other retinex algorithms

that we could adopt. Second, the strong improvement introduced
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(a) Colour image (b) Luminance (c) Our method with 50% saturation

Figure 6. In this image, one could argue that its luminance version does not need any enhancement. However, we can notice how our method preserves some

detail in the girl’s pullover, that was invisible in the luminance image.

(a) Colour image (b) Luminance (c) Retinex on luminance (d) Our method with 50% satura-
tion

Figure 7. This example shows that the simple application of Frankle and McCann’s retinex on a luminance image does not produce the same result as our

method, that introduces a much more vivid contrast on its output image.

by mild saturation reduction is very meaningful and worth fur-

ther study. Last but not least, in this paper we only touched upon

the sign of the gradient computed with Socolinsky and Wolff’s

method, yet a general solution to this problem (such as the one

proposed in [4]) may greatly improve the quality of produced im-

ages.
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