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Abstract 
Local linear regression is widely used in describing input-

output relationships and has been applied with reasonable success 
to computational problems in color imaging such as 
approximating printer-models and device color characterization 
transforms.  A popular flavor of local regression is one where 
locality is achieved by using a weight function which decays as a 
function of the distance from the regression data point. This paper 
proposes an improved method for local regression by introducing 
the notion of ``shaping” in the localizing weight function.  We 
make two novel contributions: 1) a parameterization of the 
regression weight function via a shaping matrix, and 2) a method 
to optimize shape by explicitly introducing the shaping matrix 
parameters in the regression error measure.  Experiments reveal 
dramatic improvements in approximating printer color transforms 
by using shaped local linear regression. A particularly pronounced 
benefit is gained in the case of sparse training sets, which are 
fairly common in color characterization applications due to the 
effort and/or cost associated with acquiring color measurements. 

 
1. Introduction 

 
Local regression has attracted considerable attention in both 

statistical learning literature [1] as well as a variety of applications 
where a complex non-linear multi-dimensional transform needs to 
be approximated with the availability of a training set of input-
output data samples. 
  

An important class of applied problems which benefits from 
local regression is the derivation of color device transforms. In all 
generality, the problem of color transform derivation is one of 
estimating the multi-dimensional color mapping y = f(x) where x 
and y represent color variables in distinct input and output multi-
dimensional color spaces. Examples include CMYK  CIELAB 
color transforms, RGB  CMYK transforms etc. Local regression 
is well suited to these problems for two reasons: 1.) physically 
based models that describe these relationships are often 
inadequate, and 2.) color transforms exhibit varying curvature as a 
function of location in color space, engendering the need for 
locally based approximations.     
 

In particular, local linear regression is widely employed 
because it provides the desirable trade-off between achieved 
accuracy and ease of formulation and computation. Local linear 
regression exploits the fact that, over a small enough subset of the 
input domain, any reasonable function can be well approximated 
by a linear function.   
 

As with any local learning problem, the user must define what 
is to be considered local to a test point. Two standard methods are 

employed for defining locality: (i) specifying the number of 
neighbors k also known as a neighborhood definition, or (ii) 
specifying the volume of a symmetric distance-decaying weight 
function which attaches more weight to nearby points. Commonly, 
the neighborhood size or the volume of the weight function is 
chosen by cross validation over training samples [2]. 
 

Much previous work in local regression has focused on 
adaptive neighborhood definitions.  This includes k-nearest 
neighbors (NN), k-surrounding neighbors, space partitioning 
techniques and input density based neighborhood selection. 
Recently, the idea of enclosing neighborhoods was put forward by 
Gupta et al in [3], which also provides a comprehensive review of 
neighborhood selection techniques.    
 

Like most statistical smoothing approaches, local regression 
suffers from the so-called “curse of dimensionality”, the well 
known fact that the proportion of training data that lie in a fixed 
radius neighborhood of a point decreases to zero at an exponential 
rate with increasing dimension of the input space.  The 
neighborhood based approaches for local regression therefore fare 
well for low-dimensional data (<=2) and a reasonably dense 
sampling of the input space to generate the training set.  Color data 
can easily be of high dimensionality, e.g. CMYK or more 
colorants, and a dense sampling of the colorant space would incur 
significant printing and measuring. Many neighborhood 
definitions, e.g. the convex hull based neighborhoods in [3] will 
actually lead to degenerate neighborhoods for high-dimensional 
data and hence yield high model bias or regression error. 
 

In this paper, we propose the use of weight function shaping 
in local linear regression to address this problem. The fundamental 
premise of our scheme is to recognize that it is not just the volume 
of the decaying weight function but how that volume is spread out 
directionally, i.e. the shape, which plays an important part in 
estimating the true regression transform f(x). Analogous to 
neighborhood based approaches; our proposal decides which 
training data points to pick and how much weight to attach to 
them. For sparse and high-dimensional data (>=3) this is a crucial 
concern because making the best use of a given volume is often of 
paramount importance to the quality of estimates.  
 

To achieve this in an automated fashion, we parameterize the 
weight function using a “shaping matrix”.  We then select optimal 
shapes that provide the best estimates of the true transform by 
minimizing error over the training set. In other words, the 
regression cost function is re-formulated to include a joint 
minimization over the regression parameters as well as the shaping 
matrix.  
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We apply the proposed shaped  local linear regression (SLLR) 
to the problem of modeling CMYK  Lab printer color transforms 
with good success.  The benefits over local linear regression 
(LLR), which employs a fixed symmetric shape, are particularly 
pronounced for sparse training data that is representative of real 
world imaging applications. 
 

The rest of the paper is organized as follows. Section 2 
reviews traditional linear regression, and local linear regression 
where locality is achieved by a weight function. Section 3 
introduces and motivates shaping in the weight function via a 
synthetic example, and formulates SLLR as an optimization 
problem.  Section 4 presents experimental results in approximating 
a real-world printer color transform. Section 5 concludes the paper 
with directions for future work.  
 
2. Multi-dimensional local linear regression 
 

Regression is a common technique for estimating a functional 
relationship between input and output data. Linear regression is a 
specific case where the functional relationship is approximated by 
a linear transform. When the input and output data belong to 
multidimensional vector spaces, the linear transform is a matrix. 
Specifically, consider the problem where y in Rm is to be estimated 
as a function of an input variable x in Rn. Let Γ = { (x

i
, y

i
), i = 1, 2, 

…, T} denote the set of training data over which this response in 
known. The linear approximation is given by: 

 
nmmn RRR ×∈∈∈=    ,  ,     ,. AyxxAy    (1) 

 
The best regression parameter A is determined by minimizing 

the regression cost function that describes an aggregate error 
between y

i
 and A.x

i
 over the training set. 

 
Local linear regression [1] is a generalization wherein the 

matrix A varies as a function of location x in input space. Thus we 
have 

 
nmmn

X RRR ×∈∈∈=    ,  ,     ,. AyxxAy   (2) 
 

One way to achieve this locality is to obtain the regression 
matrix Ax for each x by simply carrying out the regression in a 
neighborhood of x which is a subset of the training set. Such 
neighborhood definitions have indeed been the focus of much 
research in local regression and are reviewed in [2, 3].  
 

This paper focuses on the alternate formulation, where for 
each input data point x, the “best” regression parameter A

x
 is 

determined by minimizing the regression cost function: 
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1
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=
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T
C xxxAyA        (3) 

Here w(xi, x) is a non-negative weighting function that assigns 
more weight to training data points closer to x than to those distant 
from x. A popular instantiation is: 
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The above weight function is plotted in Fig. 1 for a 2-D input 
variable x. Clearly, there is decay as a function of distance from 
the center point, x

0
 which means that in the cost function of Eqn 

(3), more weight is attached to regression sets for which d(x
i
, x

0
) is 

small. Qualitatively, the subset of {x
i
}’s for which w(x, x

0
) is 

greater than a threshold (so as to have a significant impact on the 
cost function) constitutes a local neighborhood of x

0
. 
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Fig. 1: Exponential weighting function given by Eqn (4) 

The more general requirement is for w(xi, x) to decay as a function 
of the distance d(x, xi). Hence, w(xi, x) may be expressed as:  

 

)),((  ),( xxxx idw i ϕ=   ,                 (5) 

 
where φ is a univariate non-negative function that is decreasing in 
its argument. For the instantiation of the weight function in Eqn 
(4), φ(z) = exp(-α.z2) and d(x, xi) = || x – xi||. 
 
3. Shaped Local Linear Regression (SLLR) 
 

We begin by observing that the particular choice of w(x, xi) 
has a significant impact on the solution to the regression error 
minimization problem. Further, this depends in general both on  
as well as the choice of the distance function d(x, xi).   
 
To appreciate this, consider the following synthetic function of 
two variables x = (x1, x2): 
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Note that f( ) is a linear function in the regime |x2|≤α, and assumes 
a nonlinear power-law function outside this regime. Fig. 2(a) 
shows a plot of the function for the case where α = 4, β = 0.5, and 
p = 1.5.  

-20
-10

0
10

20

-20

-10

0

10

20
-60

-40

-20

0

20

40

60

x2 x1 

 
(a) 

 

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

x1 

x2 
x 

 
(b) 

Fig. 2: (a) The simulated 2-D function of Eqn (6), (b) Contour plot of simulated 
function with training data overlaid. Green circles lie within the linear region of 
f() while red circles are located in the nonlinear regime. The circles are the 
contours of the distance function induced by LLR. 

Fig. 2 (b) shows contours of the same function with training data 
overlaid. It is desired to compute the regression output for a test 

data point x.  This figure illustrates the impact of the weight 
function w(x, xi) on the regression error.  Note that the circles 
centered around regression point x are contours of the standard 
Euclidean distance function d(x, x’) = || x – x’||.   The different 
circular contours correspond to varying choice of  in Eqn. (4) – 
which is inversely related to the volume (spread) of the weighting 
function. 
 

From a visual inspection of the plot in Fig. 2(a) it is clear that 
the function is linear in the vicinity of the regression point and can 
hence be perfectly approximated with local linear regression. But 
for that to happen, the regression must attach significant weights 
only to training data in the “linear region” (shown in green) and 
essentially ignore any training points in the non-linear region 
(shown in red). However, with the circular spreads induced by the 
standard Euclidean metric in Fig. 2(b), the red training points are 
closer to x and will in fact get more weight than the green points. 
This holds regardless of the radius of the circular contours or 
equivalently weight function volume. Thus even though the 
function is locally linear, LLR will introduce error via its inferior 
choice of how to weigh the training samples. 

 
We now present a generalization of the Euclidean distance 

metric which effectively addresses the aforementioned problem. 
For finite-dimensional input spaces, the square of the distance 
function d(x, xi) = || x – xi|| can alternatively be written as  
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i

T
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As shown in Fig. 1 (b), contours of such a distance function result 
in hyper-spheres in Rn (special case circle in R2). A generalization 
of this distance is: 

 

)()( i
T

ii xxxxxx −Λ−=−
Λ      (8) 

 
where Λ is defined as a positive definite matrix to ensure non-
negativity of the distance for all x, xi. It is easy to see now that the 
contours of this new distance are elliptical. A diagonal Λ with 
positive unequal diagonal entries results in a hyper-ellipse with 
different ellipse radii in different dimensions, while non-diagonal 
choices of Λ allow the control of orientation.  

 
Optimizing the choice of Λ: It is not difficult to see that the local 
linear estimates resulting from different choices of Λ can vary 
considerably. A reasonable strategy would be to choose Λ 
proportional to the sample covariance matrix.  
 
In locality induced by weight functions, the focus has been on 
carefully choosing volume or spread of the weight function. We 
argue that optimizing shape of the weight function is at least as 
important as optimizing the volume. More specifically, for a fixed 
volume of the weighting function, the bias of the estimate can be 
reduced drastically by shrinking the weight function in directions 
of large non-linear variation of the true transform f(x), and 
stretching in directions of small non-linear variation. 
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To formally distinguish shape from size, we re-write Λ as follows: 
 

nnT R ×∈Λ=Λ SSS ,   ;α                  (9) 

 
where S denotes the “shape matrix” and α quantifies the (inverse 
of the) volume of the localizing weight function. Clearly, for such 
an approach to be meaningful we need to restrict the volume of the 
weight function; otherwise the bias of the estimate could be 
minimized trivially by choosing zero volume. One way to 
accomplish this is to set a measure of the spread of Λ to a constant  
value.  More elaborate methods for controlling volume such as 
those based on number of neighboring observations are known and 
the reader is referred to [2] for a review. 
 

For this work, because we focus on demonstrating benefits of 
shaping we choose to set det (  )

 
as a constant. This in turn may be 

done by setting  to be a constant while imposing det (S) = 1. 
 

Given this separation of volume and shape, the shaping 
matrix may be solved for optimally by generalizing Eqn (3) to 
define a new regression error measure: 
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For each regression test point, the optimal regression as well as 
shape parameters are obtained by minimizing the above error 
measure. We refer to this framework for regression as shaped-local 
linear regression (SLLR). 
 
Comparing the optimization problem above against Eqn. (3), we 
note that the shaping matrix has been explicitly introduced in the 
optimization. Hence, the problem may be understood as one of 
determining the shape in conjunction with the regression matrix Ax 

that provides the best estimate of the true transform f(x).  In other 
words, ideally the shaping would determine the ideal directional 
“shrinkage” or “spread” of the weight function depending on 
transform curvature, and the optimal matrix is then derived for this 
weight function.  
 
Reverting to the synthetic function in Fig. 2, we recall that it is 
indeed the lack of spread in the linear region that leads to high 
regression error in Fig. 2 (b).  Figure 3 shows the same plot of f( ) 
along with a contour plot of the shaped distance function obtained 
by solving the SLLR problem of Eqn (10) (black ellipse). We 
clearly see that the shaping function elongates to favor those 
(green) training samples that lie within the linear region of f( ). 
Linear regression using these samples will indeed result in a 
perfect approximation.  As a point of comparison, the blue circle is 
the contour of the distance function induced by LLR for an 
equivalent weight function volume.   
 

Note that although the concept of shaping been described for 
linear regression, in principle the same technique readily extends 
for nonlinear regression. The elements of the matrix A would be 
simply replaced by the parameters of the nonlinear approximation 
function. Likewise, a generalization of shaping is possible by 
alternate choices of d(x, xi) and (z). 

-20 -15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

20

 x1 

x2 

 
Fig. 3: When shaping is introduced into the regression formulation, the distance 
function and associated definition of neighborhood are automatically adapted 
according to the local characteristics of the function. 

4.    Experimental Results 
 

We compared both LLR and SLLR in approximating a printer 
characterization transform mapping CMYK to CIELAB. A set of 
336 CMYK samples spanning the entire device gamut, and their 
corresponding CIELAB measurements, were used as the training 
set for the regression.  A standard IT8 target of 928 CMYK 
patches was used as the test set. 
 
The CIELAB approximation error incurred by a given regression 
technique (LLR or SLLR) was computed in two different ways. 
First the standard ΔE

ab
 color difference metric was computed. 

Second, a signal-to-noise (SNR) metric was computed between the 
squared error obtained from SLLR vs SLR: 

2

1
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iLLRiLLR xFxFE  

2

1
)(ˆ)(∑

=

−=
M

i
iSLLRiSLLR xFxFE  (11) 

SLLR

LLR

E
EJ 10log20=  

 
where )(ˆ

iLLR xF and )(ˆ
iSLLR xF are CIELAB approximations 

computed at the i-th CMYK sample (1 • i • M) via LLR and SLLR 
respectively.  For example, a gain of 6 dB means that the error 
from the SLLR approximation is about one-half of that from LLR. 
 
We quantify these error measures for two different cases. The 
results for these two experiments are reported next in Sections 4.1 
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and 4.2. Additionally, 4.3 reports some statistics of the shape 
matrix in SLLR over CMYK color space in the form of deviations 
from an identity matrix which would be the case if LLR was used. 
 
4.1 A purely computational approximation to a 4-color printer 
model 
 
In the first case, the non-linear CMYK  LAB transform is 
approximated by a purely computational technique – i.e. simply by 
using LLR and SLLR directly in the CMYK color space. The 
results for this experiment are shown in Table 1 for the IT8 test set 
and labeled as “direct approximation”. 
 
Clearly SLLR significantly outperforms LLR. In particular, the J 
(dB) values indicate that the squared error in Eqn (11) is cut by 
more than half by optimizing shape in local regression.  
 
The reader may note that all the ΔE values are relatively high for 
this case. This is because we are attempting to fit a highly complex 
nonlinear 4-dimensional printer response with a relatively sparse 
training set of 336 samples spanning all of CMYK space.  
 
4.2 Refinement of a cellular spectral Neugebauer printer model 
 
A large body of literature exists in the derivation of physically 
based printer models [4]. For halftone printers, a popular choice is 
the classical Neugebauer printer model [5] where a few canonical 
color patches of solid overprints (primaries) and single-colorant 
ramps are printed and reflectance spectra are measured for each 
patch. Approximations of the reflectance for an arbitrary CMYK 
patch are derived by a mixing model in conjunction with dot area 
functions. The second technique we propose uses local regression 
to refine estimates obtained via a state-of the-art cellular spectral 
Neugebauer printer model [6].  That is, a CMYK  Lab printer 
model (really a spectral printer model and subsequent conversion 
to CIELAB) is first developed using a cellular Neugebauer  model. 
Then either of LLR or SLLR are used as a post-processing 
refinement transform to provide an improved model prediction. 
Specifically, the regression is derived from LABin  LABout 
training data pairs, where LABin represents estimates from the 
cellular Neugebauer model, and LABout represents the “actual” 
LAB values as determined via measurement.  
 
Results for this experiment are also in Table 2. Again, the benefits 
of SLLR are readily apparent. As expected, the gain is less 
pronounced over what is observed in a direct approximation 
because the cellular Neugebauer printer model captures some of 
the non-linearity in the transform. Overall, the average as well as 
95th percentile ΔE errors are much smaller than in the direct 
approximation case and more representative of the state of the art 
in printer model approximations. Indeed the performance of SLLR 
for refinement is remarkable given the relatively small training set. 
 

4.3 Shape matrix variation in CMYK color space 
 
In this Section we provide statistics of the shaping matix  to show 
that real-world printer transforms can significantly benefit from 
shaping when approximated via local regression. 
 

Experiment Avg 
ΔE 

95% 
ΔE 

J 

Direct 
approximation  

LLR 4.53 6.94 8 dB 
SLLR 2.45 6.27 

Refinement on 
top of cellular 
Neugebauer 

LLR 3.07 5.44 5.3 dB 
SLLR 2.12 5.00 

 
Table 1: Comparison of LLR and SLLR for approximating a 
forward printer characterization transform 
 
We propose a simple measure labeled d

I
 which measures deviation 

of  from an identity matrix of the same determinant: 
 

 
 
where I is an n x n identity matrix of the same size as  such that 
det( ) = det( n/1β I) = .  

Hence a value of dI  ≈ 0 implies that the optimal shape was hyper-
sphere, i.e. coinciding with LLR. But dI >0 indicates benefits were 
seen for alternate shapes.  Further, note that this measure 
simultaneously captures notions of eccentricity as well as change 
in orientation which together comprises the shape.  Fig 4 shows 
the histogram of dI computed for the IT8 test set. Clearly 
considerable deviation from a hyperspherical shape is observed. 

Fig. 4: Distribution of deviation measure dI over CMYK color 
space. dI >> 0 indicates optimized shape differs considerably from 
the isomorphic hyper-spherical neighborhoods induced by in 
standard local regression. 
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5.   Conclusion  
 

The concept of shaping has been introduced into local 
regression. The phenomenon of shaping is parameterized via a 
simple shaping matrix, which is then explicitly introduced into the 
regression cost function. In this manner, both the shape of the 
weighting function and the coefficients of the regression transform 
are jointly optimized. The benefits of shaped local linear 
regression over standard local linear regression are clearly 
demonstrated in a printer characterization application. The 
proposed technique is deemed to be particularly advantageous 
when the training data set is sparse and/or the dimensionality of the 
input space of the transformation is high. Future work will explore 
efficient algorithms for the optimization problem introduced in this 
paper and incorporating physical device characteristics into 
determining what is optimally local. 
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