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Abstract
Illumination conditions in images, such as shadows, can

cause problems for both humans and computers. As well as
shadows obscuring some features in images for human observers,
many computer vision algorithms such as tracking, segmentation,
recognition, and categorization are challenged by varying illu-
mination. Previously, shadow removal algorithms were proposed
that require recording a sequence of calibration images of a fixed
scene over different illumination conditions, say over a day. As
another alternative, calibration is replaced by using information
in the single image itself, seeking a projection that minimizes en-
tropy and allows one to generate a grayscale image that has shad-
ows effectively eliminated. In this paper we wish to improve the
entropy-based method by carrying out a sensor sharpening ma-
trix transform first. In preceding work such a sensor transform for
shadow removal was sought by utilizing many calibration images.
Here, instead, we replace the calibration information by user in-
teraction: we ask the user to identify two (or more) regions in a
single image that correspond to the same surface(s) in shadow
and not in shadow. Then using image data from these regions
only, we generate a sensor sharpening transform via an optimiza-
tion aimed at minimizing the difference between in-shadow and
out-of-shadow pixel values once they are projected to grayscale.
Again, entropy minimization is the driving force leading to a cor-
rect sensor matrix transform. Results show that, compared to us-
ing the camera sensors as-is, the sensor sharpening is beneficial
for better shadow removal.

1. Introduction
An illumination-invariant image [1] can be formed from a

color RGB image in a straightforward fashion, provided enough
data is gathered. First, in one embodiment one forms ratios
R/G and B/G (or a variant which uses division by the geo-
metric mean of R,G,B [2]). If lighting is approximately Planck-
ian, then in Wien’s approximation the simple exponential form
of the illuminant SPD leads to the conclusion that as temperature
T changes, characterizing illuminant color, a log-log plot of the
2-dimensional band-ratio chromaticity {log(R/G), log(B/G)}
values for any single surface forms a straight line. Thus light-
ing change reduces to a linear transformation along an approxi-
mately straight line, even for real data with non-Planckian, real
lighting. Using many image patches, e.g. images of a Macbeth
ColorChecker target, if we collect image information across many
color temperatures, say using a light-box or simply forming im-
ages outdoors over different phases of daylight, then mean sub-

tracted log-log 2D-chromaticity plots all cluster around a single
line through the origin that characterizes lighting change. The
invariant image is the grayscale image that results from project-
ing log-log pixel values onto the direction orthogonal to lighting
change. Since shadows are approximately derived from lighting
change, within and outside the umbra, the invariant image greatly
attenuates the shadowing.

However, the trick is to find the correct direction in which
to project. Calibration data supplies that information. In another
variant, it is noted that, if indeed one knew the correct projection
direction in chromaticity color space, then pixels from patches
of the same material but under different lighting would project
to similar values. Hence for correct projection, the probability
distribution of projected values would consist more of peaks at
equal projected values, rather than a broader distribution. Thus
the entropy would be minimized for the best projection direction.

The second assumption used in justifying the notion that
changing color-temperature generates a straight line plot is the
assumption that sensors are quite narrow-band: this implies that
a logarithm of the inverse color-temperature in the Planckian law
simply converts to a linear term in 1/T for a straight line. So
narrow-band sensors more faithfully follow the model used in
motivating this log-log line formulation, and sharpened sensors
remove shadows better. Moreover, even if sensors are indeed not
narrow-band then they can be sharpened using a 3 × 3 sensor
sharpening matrix [3].

However, here we would wish to carry out a similar simple
matrix transform on camera sensors to implicitly sharpen sensors,
but not as the driving goal. Instead, we want to explicitly matrix
the sensors such that shadow removal is benefited. I.e., we mean
to best improve the underlying assumption behind the develop-
ment of the invariant image. Therefore, here we explicitly seek
to enhance the linearity of such log-log plots by means of a sim-
ple matrix transform of RGB values. Of course, such a transform
amounts to a sensor transform for the camera itself. (We do not
require knowledge of the camera sensors, since we utilize only
RGB values, but the effect is the same.) Note that a generic, data-
independent, sharpening matrix is derivable [4], but here we wish
to do better by using the image data itself.

In previous work, a similar sensor sharpening transform had
been accomplished [5, 6]. However, in that method extensive
camera calibration data was used, indeed imaging a ColorChecker
under many different lights. Here we mean to accomplish the
same end, sensor sharpening to enhance shadow removal, but re-
placing such calibration data by instead using only a single im-
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Figure 1. (a): Original image; (b): User-supplied shadow/non-shadow re-

gions; (c): Original image after matrixing; (d): Invariant image from color-

space transformed image.

age, and asking a user to identify in-shadow and out-of-shadow
regions. No need of labeling of regions as corresponding need
be carried out by the user, and no identification as in- or out-
of shadows is required: instead, all in- and out-of-shadow re-
gion pixel values are simply concatenated, and again an entropy-
minimization routine is employed. However, here entropy mini-
mization is adopted in a new objective function in an optimization.
The result is a single 3× 3 matrix transform, for the single image
under examination, that leads to enhanced shadow removal. Us-
ing only one image instead of an image sequence of a fixed scene
over different illumination conditions provides a much easier and
convenient mechanism for shadow removal from color camera
still images, albeit it does require some simple user intervention.

Once we have obtained the optimum 3 × 3 matrix trans-
form, M , we apply that transform to the image (equivalent to
having applied M to the sensors) and find the illumination in-
variant image using the algorithm proposed in [1, 7]. The re-
sult provides better attenuation of shadows. The output obtained
is a 1-dimensional, grayscale image, illumination invariant and
hence approximately shadow-free. To generate a full-color (3-
dimensional color) shadow-free image, we could then go on to
apply the method in [8], comparing edges in the original image
and edges in 1-dimensional illumination invariant image. How-
ever, here we focus on the task of generating a better grayscale
invariant image in the first place.

To see how this workflow proceeds, consider image Fig. 1(a),
showing a strong cast shadow. This image was taken with no
gamma correction, and in fact all processing (cf. [9]) except de-
mosaicing turned off. Images are shown displayed in the sRGB
color space [10]. The idea is that the user supplies in- and out-
of shadow information by identifying (at least two) regions in the
image, as in Fig. 1(b). The optimization proposed (see §3) then
implies a color space transform, leading to a new color image as
in Fig. 1(c): in the new color space, invariant image generation by
entropy minimization is guaranteed to better reduce shadows. The
projected grayscale output, for this image, is shown in Fig. 1(d).

2. Invariant Image Formation
To motivate sensor sharpening as an important mechanism

for improving shadow removal, here we briefly recapitulate illu-
mination invariant image formation.

Consider the RGB color formed at a pixel from illumina-
tion with spectral power distribution E(λ) impinging on a surface
with surface spectral reflectance function S(λ). If the three cam-
era sensor sensitivity functions form a set Q (λ) then the RGB
color ρ at any pixel results from an integral over the visible wave-
lengths:

ρk =

∫
E(λ)S(λ)Qk(λ) dλ , k = R, G, B (1)

If camera sensitivity Qk(λ) is exactly a Dirac delta function
Qk(λ) = qkδ(λ − λk) (that is to say, a perfectly narrow-band
sensor), with qk the strength of the sensor qk = Qk(λk), then the
equation reduces to the simpler form

ρk = E(λk)S(λk)qk (2)

Now suppose lighting can be approximated by Planck’s law:

E(λ, T ) ≈ I c1λ
−5
(
e−

c2
λT − 1

)
(3)

with light strength I . (Constants c1 and c2 equal 3.74183 ×
10−16Wm2 and 1.4388 × 10−2m◦K, respectively.) For illu-
mination in the temperature range 2500K to 10000K the term
e−

c2
λT � 1 and Wien’s approximation [11] can be used:

E(λ, T ) ≈ I c1λ
−5e−

c2
λT (4)

Then returning to the narrow-band sensor response in eq. (2),
RGB color ρk, k = 1..3, is simply given by

ρk = Ic1λ
−5
k e

− c2
λkT S(λk)qk (5)

Now suppose we first form band-ratio chromaticities from
color values given by this equation, dividing ρR and ρB by ρG,
and then take the logarithm:

rk ≡ log(ρk/ρG)

= log(sk/sG) + (ek − eG)/T , k = R, B (6)

where we define sk = c1λ
−5
k S(λk)qk and ek = −c2/λk. As

temperature T changes, 2-vectors rk, k = R, B, will follow a
straight line in 2-d chromaticity space. Moreover, this will be
true for pixels that correspond to each surface spectral reflectance
S(λ), so that for all materials the lines will be parallel, with slope
(ek − eG).

Calibration then amounts to determining the 2-vector direc-
tion (ek − eG) in the color space of logs of ratios. Note that as in
all chromaticity operations, we effectively remove intensity infor-
mation I . As well, in eq. (1), we omitted any multiplicative shad-
ing term, e.g., Lambertian shading, but this will also disappear in
rk. Note, however, that we did not include specular highlights, so
these may in actual trials form a difficulty.

The invariant image, then, is formed by projecting 2-d col-
ors into the direction e ⊥ orthogonal to the 2-vector (ek − eG).
The result of this projection is a single scalar which we then code
as a grayscale value. Since we have projected orthogonal to the
direction of lighting change, shadows disappear.
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Figure 2. Chromaticities for 7 different colors, imaged under a set of differ-

ent Planckian illuminants

Experiments have shown [8] that images of the same scene
containing objects of different colors illuminated by any complex
lighting field (including lights of different colors and intensities)
will map to the same invariant image. Most importantly for this
paper, shadows which occur when there is a change in light but
not surface will disappear in the invariant image.

However, we draw the reader’s attention to a possible prob-
lem. Specifically, the invariant is designed to work for Planckian
lights. Additive combinations of Planckians (which might result
indoors when there is mixed light from a Tungsten source, say,
and outdoor illumination through a window) is non-Planckian.
However, because the Planckian locus is a very shallow crescent
shape, additive combinations of light tend to fall close to the lo-
cus. Experimentally, the invariant image factors out the effect of
lighting even for additive combinations of Planckian illuminants
[12].

Nevertheless, we still have a problem remaining: we have
assumed narrow-band sensors, whereas typical sensor sensitivity
curves for cameras can be quite broad [13]. The next section ad-
dresses this problem.

3. Finding the Sensor Transform
In the formation of an illumination invariant image, we need

log chromaticity change with illumination to be linear with in-
verse color temperature 1/T , and in turn this falls out from the as-
sumption of Planckian lighting and sensors that are fairly narrow-
band. However sensors are not typically narrow-band in reality,
and hence the linear shift of chromaticities is only approximate.
Fig. 2 demonstrates this property by displaying chromaticities for
surfaces of 7 different colors (two are grays), imaged under dif-
ferent illuminants. Clearly, chromaticities for each surface do not
fall exactly on a line, but nevertheless the curve might indeed be
approximated as a line. We wish to make these curves as linear as
possible in order to get a best possible result when applying the
linearity assumption to form the illumination invariant image. We
posit that this can be accomplished by linearly transforming the
RGB values, effectively transforming the camera sensors.

The strategy proposed in this paper is to add additional infor-
mation provided by the user, in the form of delineating (possibly a
collection of) regions within shadows and outside shadows. These
need not be labeled as belonging together in shadow/non-shadow
pairs, but are simply concatenated. The idea is to include in a
subset of pixels values from sun and shadow for the same mate-
rial, e.g., grass in sun and grass in shadow. Since such pixels are
from the same surface, but with different illumination conditions,
they fall on a single line in a log-log plot. Each different material

will fall on a different line, but all lines should be approximately
parallel.

We wish to find a simple 3× 3 matrix transform M of cam-
era sensors such that these pixels are as linear as possible in the
log-log plot.

Suppose that matrix P consists of the set of n × 3, RGB
values for n pixels selected by the user — both shadow and non-
shadow pixels. M is the 3 × 3 matrix such that after matrixing,
the new sensors produce a more constant invariant. Thus an opti-
mization can be stated as follows:

min
M

f(M , P ) − α × rank(M )

subject to
∑3

j=1
Mij = 1 i = 1..3

|Mii − 1| ≤ β i = 1..3

|Mij | ≤ β, i �= j (7)

The objective of the first constraint is to limit the linear com-
binations of sensors allowed so only sensors that form a convex
sum are allowed. The objective of the second and third constraints
is to limit the changes in the sensor so that, e.g., red should be red
after applying the transform, and similarly for blue and green: i.e.,
diagonal elements of the matrix transform should be limited to a
small excursion from unity. The β parameter applies this limita-
tion (here we set β = 0.3).

The first term in the objective function consists of a function
f(M , P ) to evaluate whether the pixels in P lie along a line
in the log-log plane after application of matrix M . The mea-
sure employed in this paper is to evaluate the entropy, for the
minimum-entropy projection to grayscale for user-selected pix-
els, for any candidate matrix M . That is, for any candidate M ,
we project pixels P over all angles θ = 0..180◦ (just a few an-
gles are required in practice) and take as our objective function
value f the least entropy η over θ. We repeat this calculation for
all candidate matrices M .

Suppose that function χ returns 2-vector log chromaticities
for an RGB triple. Then objective function f can be defined as
follows:

f(M , P ) = min
0<θ<π

η(χ (P M )

[
cos(θ)
sin(θ)

]
) (8)

The second term in the objective function (7) is meant to en-
courage a non-rank-reducing matrix M . To define a non-integer
effective-rank function, we take

rank = λ3/λ1 (9)

where λi, i = 1..3, are the singular values in an SVD decomposi-
tion of matrix M , in decreasing order. We simply use a constant
α to control the rank constraint in the optimization (we set it to
0.05).

Fig. 3 demonstrates the difference between images upon ap-
plying such a matrix transform: in effect, the color space is
changed. To illustrate the effect of optimizing for shadow re-
moval, Fig. 4 shows a plot of the user-selected pixels of the image
of Fig. 3 in the log-log chromaticity plane, before and after ap-
plying the matrix transform. We note that the chromaticities are
clearly much more linear in the new color space, after applying
the matrix transform.
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(a) (b)

Figure 3. (a) Original image; (b) Image after matrixing with optimization

result.

(a) (b)

Figure 4. (a) User-selected pixels including shadow and non-shadow val-

ues, in 2D-color log-chromaticity plot; (b) Selected pixels after matrixing.

With knowledge of the user-selected shadow and non-
shadow regions, both corresponding to the same materials, we
are guaranteed by the optimization to arrive at a more linear set
of lines in log-chromaticity space. Since such lines indeed corre-
spond to both shadow and sun regions, projection will effectively
remove shadows, or at least greatly mitigate them.

In the next section, we consider the shadow-removal capa-
bility of the proposed method.

4. Results
Fig. 5 shows some results, using optimization (7). The in-

put image is shown on the left, followed by the result of the color
space transform implied by application of sharpening matrix M .
The third image shows the shadow-free invariant image as found
after matrixing, and the fourth image shows the difference be-
tween invariants before and after applying matrix M . Clearly,
shadow removal has been improved by our optimization.

Fig. 6 shows several more results: we found that in every
case application of a color space transform, optimized for shadow
removal, improved the grayscale invariant image. While results
are not perfect, they do show greatly attenuated shadows.

Other images show similar improvement. Hence we can con-
clude that color space optimization before invariant image gener-
ation is indeed beneficial.

In order to evaluate this improvement we need to check
whether the shadow and non-shadow regions have the same ap-
pearance. Since the shadow and non-shadow regions are usually
selected to contain simple, textured contents, but with different
windows sizes, we compute the intensity histogram of the two re-
gions and demonstrate the degree of similarity between the two
regions using the correlation measure. Such an evaluation does
not focus on edges but instead evaluates the degree of similarity of
the distribution of intensity over in- and out-of- shadow regions.

Table 1 shows the correlation of the two regions in some in-
variant images formed without as opposed to with applying matrix
M . The complete set of results indicate an average improvement

Image without M with M

House 0.9473 0.9598
Path 0.9867 0.9872
Ball 0.4454 0.9648
Arch 0.6762 0.8228

Table 1. Correlation of shadow and non-shadow regions in in-
variant images before and after applying matrix M

of 41.9% in the correlation for the idea of applying a sharpening
matrix before finding an invariant image. The improvement is
most apparent when the the result without application of M is
not a high correlation by itself.

5. Conclusion
With the objective of removing shadows from images, in this

paper we have proposed a new schema for generating illumina-
tion invariant images. The idea is that the user identifies two or
more image regions, in and out of shadows. Then a color space
transform is determined via an optimization aimed at enhancing
shadow removal. Results show that the method effectively re-
moves or at least greatly reduces shadows in the output grayscale
invariant.

In future, we will examine the effect of noise on the proposed
scheme, in particular the effect of JPEG block artifacts and the
effect of various JPEG de-blocking and de-noising methods.
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Figure 5. (a,e) Original image; (b,f) Original image with matrix M applied;

(c,g) Invariant of image with matrix M ; (d,h) Difference between invariant,

without and with matrix M .
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Figure 6. Input and output images, using matrix M .
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