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Abstract
Material classification is becoming more important in com-

puter vision and digital photography applications, which require
accurate classification of objects present in the imaged scene.
This is a very challenging task because the sheer diversity of scene
content and lighting conditions decreases the usefulness of many
color- and texture-based features used in image classification. In
this work, we investigate the potential offered by using informa-
tion outside of the visible spectrum, specifically the near-infrared
(NIR). The difference in the NIR images’ intensities is not just due
to the particular color of the material, but also absorption and
reflectance characteristics of the colorant. This relative indepen-
dency of NIR and color information makes NIR images a prime
candidate for classification. The database, on which the training
and testing were conducted, consists of textile, tile, linoleum and
wood samples. To classify the materials, visible and NIR images
were analyzed according to their lightness, texture, and color. The
analysis results were the input to a classifier in form of feature
vectors. The results show that our database is classified almost
exactly. Comparing with visible-only features, wood and textile
samples were better classified due to the additional information
the NIR images provide.
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INTRODUCTION
Computer vision, in recent years, has been extensively used

in real world systems for a number of applications that rely on
image segmentation, which requires accurate classification of ob-
ject. Using a standard digital camera, there is almost no difference
between two different materials with the same color under a given
light source, i.e. a number of important object classes exhibit little
or no differences in their RGB response, thus making them impos-
sible to discriminate using standard methodologies. However, if
one considers the electromagnetic spectrum beyond the range that
the human visual system is sensitive to (400− 700nm), visually
similar samples may exhibit very different characteristics.
In this work, we investigate the potential offered by using infor-
mation outside of the visible spectrum, specifically near-infrared
(NIR) images.
Near-infrared radiation lies just beyond the visible spectrum
(wavelengths greater than 700nm). NIR images exhibit a few dis-
tinct effects [1]; most of the pigments and dyes used for mate-
rial colorization are somewhat transparent to NIR [2], so different
NIR intensity in the NIR images gives the information pertinent
to material classes rather than the color of that object. In NIR im-

Figure 1: A typical photograph from a wood sample in the a)
visible b) NIR part of the spectrum. The colorant is transparent to
the NIR and intrinsic texture is observed.

ages, the observed surface texture appears more intrinsic, hence
studying it leads to more accurate results than only using visible
images (see Fig. 1 for illustration).
In this paper we propose a material classification method using

sample’s image in the visible (RGB) and in the NIR (a single
channel image) part of the spectrum.
Image classification using NIR information has been widely used
in remote sensing. As opposed to our method where, the image
is single channel in the NIR range, in remote sensing it is multi-
spectral and contains the spectral information of the samples be-
ing observed in the visible and NIR part of the spectrum. The
reflectance spectrum of a material serves as a unique signature for
the material [3].
Other scientific applications of near-infrared for material classi-
fication focus on near- infrared spectroscopy (NIRS), wherein a
small part of the sample is placed inside the spectroscope and the
near-infrared light is employed to measure spectral characteristics
of test objects [4]. NIRS is a nondestructive analytical technique
for studying interactions between incident light and a material’s
surface. However, in our method the classification is done by
the features extracted from the whole sample and in addition to
the NIR information, color and texture information are also used.
NIRS has been found to be a useful technique to characterize ma-
terials such as textile, polymer and wood products [4].
Image-based classification methods, on the other hand, have fo-
cused on the extraction of color, shape and various texture analy-
sis. Color is a basic feature used to extract a number of different
information from an image [5]. Texture information can also be
extracted to facilitate material classification [6,7].
In this paper, we classify four different types of materials: textile,
tile, wood, and linoleum. All the images were taken under con-
trolled viewpoint and illumination conditions and their analysis
was conducted in both the frequency and spatial domain. Image
features include the relation between materials’ intensity in the
NIR and luma in the color images, texture (in the frequency do-
main), and color.
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Figure 2: Intensity in NIR versus luma in color images. In wood,
tile and linoleum, linear behavior is observed while for textile a
two dimensional Gaussian can be fitted. The solid lines represent
the respective linear regressions and the ellipse is the projection
of the 2D Gaussian. The two textile samples, specified by black
arrows, have roughly the same luma but different NIR intensities.

After extracting the relevant features and calculating the
corresponding feature values, the materials were classified
according to a simple probability function. The results show that
our limited database is classified almost exactly, and comparisons
with visible-only features show that adding NIR information
yield a substantial increase in the classification rates.

CLASSIFICATION FRAMEWORK
To classify the materials in the database, visible and NIR

images were analyzed according to their lightness, texture, and
color. The database consists of 51 wood, tile, textile and linoleum
samples. The analysis results are the input to a classifier in form
of feature vectors to calculate the probability of that sample to
belong to a material category.

Image Analysis
The images analysis comprises three steps. First, a compar-

ison is made between the samples’ luma in the visible and NIR
images, followed by a texture and color analysis.

Luma Analysis
Since the pigments used for colorizing materials are some-

what transparent to NIR [2], we start by comparing the luma of
the visible image to the NIR intensity.
The YCbCr color space separates chroma information of an image
from luma information. Luma (Y), which is the weighted sum
of the non-linear RGB components after gamma correction, is
determined by:

Y = 0.2989R′ +0.5870G′ +0.1140B′ (1)

Where R′, G′ and B′ are the normalized sRGB values.
Y in color images (YV IS) and intensity in NIR images (INIR) [1]
are calculated for all samples. Fig. 2 plots INIR versus YV IS for
all samples in the database. Note that the intensity in the NIR
images is always higher than luma in the visible images. In

addition, samples in each of the wood, tile, and linoleum classes
form a line, which can be represented by a linear regression,
The regression lines show high correlation coefficient values
of r2 = 0.93, 0.86, and 0.93, for tile, wood, and linoleum,
respectively.
The INIR for almost all textile samples, however, lies in the
narrow range between 0.6 and 0.8. YV IS, on the other hand, lies
in a broader range. As illustrated in Fig. 2, the relation between
textile intensity in NIR and luma in color images can be modeled
by a two dimensional Gaussian, whose mean and variance are:

μv = 0.4 μh = 0.7 σv = 0.13 σh = 0.07 (2)

Figure 3: Samples in the spatial (left) and frequency (right) do-
main. The frequency spectra shows energy patterns that are char-
acteristic of the materials’ surfaces. A line can be observed in
the wood sample due to the existing parallel lines on the surface.
The peaks for the textile sample are due to the nature of the wo-
ven fabric. In tile and linoleum there exists high energy in low
frequencies.

Texture Analysis
Images of real objects often do not exhibit regions of

uniform lightness. For instance, the image of a wooden surface
contains variations in intensities that form certain repeated
patterns due to its specific surface characteristics. Figure 3
displays samples from different materials in the spatial and
corresponding frequency domain. Due to the nature of woven
fabric, where the surface is formed by a series of straight parallel
lines crossing each other, a number of peaks in certain frequency
bands can be witnessed. The naturally existing parallel lines on
the wood surface result in the formation of a line at a specific
angle in the frequency domain. Tiles’ smooth surface leads to
most energy being located in low frequencies.
To analyze these texture characteristics, we use here filters
adapted from Ginsburg [8], namely ring and rectangular filters.
Ring filters are used for analyzing the energy in certain frequency
bands, while rectangular filters are employed for orientation
detection. Ring filters Hring

(i) are Gaussian functions and defined
according to:

Hring
(i)(w1,w2) = exp

(
−
(

(r−μi)
σi

)2
)

(3)
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r =
√

w2
1 +w2

2 (4)

where w1,w2 are spatial frequencies in the spatial domain. μi and
σi are parameters determining the center frequency and the band-
width of each ring filter, respectively. The filters are nondirec-
tional (See Fig. 4). In this paper, 13 ring filters have empirically
been chosen and applied.
The other set of filters are rectangular filters Hrect that are con-
structed according to:

w1−tan(θ ×w2)− 0.1
2× cosθ

≤Hrect ≤w1−tan(θ ×w2)+
0.1

2× cosθ
(5)

where θ varies from 0 to π , i.e., the rectangular filter is rotated
and the energy is calculated at each angle. The width of the filters
is constant and empirically chosen to be 0.2.

Different materials can be colorized in such way that their
patterns give the same features as other materials in the texture
analysis. Knowing that some colorants used in printed material
are usually transparent to NIR, using NIR images for texture anal-
ysis avoids such problems.

(a)

(b)

Figure 4: Representations of one of the a) ring and b) rectangular
filters in the frequency domain. The height of the surface above
the w1, w2 plane and the color level values represent the filter’s
amplitude.

Color Analysis
The process of colorizing a manufactured object is complex

and varies according to the material; the colorants themselves
are also diverse [2]. Although different colorants may look
identical in color images, they have different responses in NIR
images. Therefore, color information of the samples and the

Figure 5: Hue versus saturation in color images. In wood sam-
ples, hue varies within a narrow angle, however, they have a wide
range of saturation. To be expected tile and textile samples cover
almost all hue and saturation values. The linoleum samples in
our database are also within a narrow hue range and are not very
saturated. However, this is due to our limited sample selection.

corresponding NIR intensities can be an important cue. We
employ the hue, saturation and luminance (HSL) space [11],
used in color image processing. Although almost all colors of
the visible spectrum can be produced by merging primaries,
the process of colorizing different material makes each class of
material capable of having only a limited gamut (i.e., the set of
possible colors within a material) of the visible spectrum (see
Fig. 5 for illustration). Samples that have the same luma in color
images may or may not have the same NIR intensity (see Fig.
2). The two textile samples, indicated by black arrows in Fig. 2
have roughly the same luma but different NIR intensities. The
hue values in these two samples are different (see Fig. 6), i.e., the
difference in NIR intensity for the same material can be related
to the difference in hue. Hence, analyzing the gamut of each
existing material, obtained using hue and saturation from the
color image and the intensity from the NIR image of each sample
may lead us to a better classification of material.
To do so, the RGB values of each sample are first converted into

HSL and the luminance is replaced by the intensity of the NIR
image. A 3-D convex hull algorithm was applied to determine
the position and the volume of the gamut for each material class.

From Features to Classification
In this section, we explain how to obtain feature vectors and

classify materials from the acquired features. First, features are
selected and then the probability of a sample to belong to a mate-
rial class is calculated. We explain how to calculate the probabil-
ity pertinent to each analysis.
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(a) (b)

Figure 6: Images of two textile samples with the same luma in
the visible part of the spectrum but different NIR intensity. The
difference in intensity in the NIR images can be related to the
difference in their hue.

Feature Extraction
From each analysis, features are selected to quantify material

characteristics. The choice of appropriate descriptive parameters
will significantly influence the effectiveness of the classification.
Intensity in NIR and luma in color images are taken to be feature
values T1 and T2.

T1 = INIR T2 = YV IS (6)

For texture, we normalized the energy existing in different ring
filters.

Ē(i)
ring =

E(i)
ring

maxi=1...13

(
E(i)

ring

) (7)

E(i)
ring = ‖FI(w1,w2)×H(i)

ring‖2 (8)

Where Ēring is the normalized energy, FI(w1,w2) is the Fourier
transform of the image I, and ‖.‖ denotes the Frobenius norm (see
Fig. 7 for a representative sample from each material category).
For all the non-textile samples, the larger the diameter of the
ring filter, the less the spectral energy in the corresponding ring
filtered image, i.e., most of the energy lies in the low frequency
part of the spectrum. For the textile samples, however, the
existing peaks in the high frequencies due to the nature of the
woven fabric will result in an increase of the energy in the ring
filtered images incorporating those peaks. Hence, the filtered
image for which the energy is maximum can be taken into
consideration as a feature value, which we call T3. For simplicity,
this feature value can be reduced to a binary value:

T3 =

{
0 if argmaxi=1...13

(
Ē(i)

ring

)
= 1

1 otherwise
(9)

Fig. 8 displays the energy existing in different rectangular
filters for all angles between 0 and π , one degree interval, for a
random sample from each material category. In the smooth sam-
ples, like tiles, the energy is constant at all angles, for oriented
texture samples (such as wood), an energy peak is observed at a
specific angle. For textile samples, due to the existence of peaks in
the frequency domain, more than one peak of energy is observed
at some specific angles.

The energy peak at a certain angle is detected when its dis-
tance to the energy of surrounding angles is more than a certain
threshold. The considered threshold δ will reduce the sensitivity

Figure 7: Relative energy Ē(i)
ring in all 13 ring filtered images for

a random sample in each class. The corresponding T3 value for
each sample is: [0,0,0,1].

of the algorithm to noise, thus it is taken as the variance of that
signal,

δx =
∑180

i=1

(
Ex

(i) − Ēx
(i)
)2

180
(10)

E(i)
x = ‖FI(w1,w2)×H(i)

rect‖2 (11)

where Ex
(i) is the energy existing in the ith rectangular filtered

image and Ēx
(i) is the average of the energy over all rectangular

filters. As a result, the existence of one or more peaks at an angle
is used as the feature value T4.

T4 =

⎧⎪⎨
⎪⎩

0 if NP = 0

1 if NP = 1

2 otherwise

(12)

Where Np is the number of detected peaks.
The fifth feature vector contains the hue, saturation, and NIR
intensity coordinates.

T5 = {Hue,Saturation, INIR} (13)

Luma Related Probability
As seen in section 2, wood, tile, and linoleum have YNIR

varying linearly with YV IS. This behavior is easily modeled by
linear regression:

Ŷi j = Xi jβ̂i (14)

where β̂i =
(
Xi

T Xi
)−1

Xi
TŶi, and Ŷi = Xi

(
Xi

T Xi
)−1

Xi
TYi. Yi is

the luma of the visible images and Xi contains the corresponding
intensity in NIR images.
From this, the vector of residuals can be defined as [12]:

ε̂i = Yi − Ŷi (15)
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Figure 8: The energy in the rectangle filter from 0 to 180 degrees
for a random sample in each class. The detected peaks are marked
by red circles. The corresponding T4 value for each sample is:
[1,0,0, 2].

By studentizing the residuals [12], we are able to determine the
probability of sample x belonging to tile, wood, or linoleum. For
each line, the variance of the residuals for all samples can be cal-
culated under a certain confidence level αi. Variance of residual
of each sample defines the distance from the regression line that
shows how much further from the regression line a new samples
in that material class can fall. In other word, we can be αi% sure
that all samples in the material class fall in the area around the
regression line that has been defined by the maximum variance of
residual. Moreover, we are (1−αi)% sure that our target sam-
ple belongs to the line representing the class when that sample is
located outside of that area. The probability for any new sample
to belong to each class can be calculated by the maximum con-
fidence interval that makes an area so that the target sample is
outside of the area:

PL ((x ∈ Ai=1···3) | T1,T2) = 1−α (16)

where α is the maximum confidence interval forming an area to
which sample x doesn’t belong, A = {Ai | i = 1 · · ·3} represent
tile, wood, and linoleum, respectively. The residual variance is
calculated within the confidence interval of α , thus 1−α is the
probability that the sample belongs to that class (see Fig. 8 for
illustration).
For the textile class, we model the relationship between INIR and
YV IS as a 2D Gaussian function. P(textile | T1,T2) is thus given
by:

PL ((x ∈ A4) | T1,T2) =
1

2πσvσh
e

−1
2

(
T 2
1 −μv

σv
+

T 2
2 −μh

σh

)

(17)

where σv and σh are the variance and μv and μh are the mean
of the two Gaussians with respect to the color and NIR images.
The values of σ and μ were given in section 2. We are, however,

Figure 9: The residuals of the wood samples within 63% confi-
dence interval. The black line is the regression line representing
the correlation of the wood samples in the database. The area
in which we are 63% confident that samples are wood is shaded
gray. Thus the probability of the target sample (green point) to be
wood is 37%.

T3 T4 Textile Tile Wood Linoleum

1 0 4/30 0 0 0
1 1 6/30 0 0 0
1 2 13/30 0 0 0
0 0 3/30 6/6 7/8 0
0 1 4/30 0 1/8 7/7
0 2 0 0 0 0

Table 1: P(T3,T4 | Ai) in the database.

interested in the probability of a sample belonging to one class
(Ai) but not the other

(
x �= A j �=i

)
:

PL
((

x ∈ Ai ∩
(
x �= A j �=i

)) | T1,T2
)
=

P(x ∈ Ai | T1,T2)×P(Ai)
∑n

i=1 (P(T1,T2 | Ai)×P(Ai))
(18)

where

P(Ai) =
Ni

NT
(19)

and Ni is the number of samples existing in the ith material in the
database and NT is the total number of samples in the database.

Texture Related Probability
In order to calculate the probability of a sample to belong to

a material category, knowing T3 , T4, the Bayes theorem is used.

PT ((x ∈ Ai) | T3,T4) =
P(T3,T4 | Ai)×P(Ai)

∑n
i=1 (P(T3,T4 | Ai)×P(Ai))

(20)

P(T3,T4 | Ai) can be defined as number of cases favorable for the
feature vector [T3,T4], over the number of total samples in mate-
rial Ai. We calculate this probability for each feature vector, i.e.,
the probability of each sample of a certain material to have a cer-
tain feature value [T3,T4] (see Table 1).

Color Related Probability
Knowing the position of a new sample in H,S and INIR color

space (T5) as well as the gamut for each material class, we can
conclude that if (T5) exists in the gamut of material Ai, then that
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sample will belong to the class Ai. Therefore, the following state-
ment can be used to specify the probability of a sample to belong
to the material class Ai:

PC (x ∈ Ai) =

{
1
n if T5 ∈ GamutAi

0 if T5 �∈ GamutAi

(21)

where n is the number of material classes whose gamuts intersect
at the position of T5.

Final Probability Estimation
We assume that the probabilities resulting from luma and

color analysis is independent from texture analysis, so for that
neither luma nor color of a material impact the surface character-
istics of that material.
To investigate the dependency of color and luma analysis, we
should mention the fact that three attributes of color in HSL are
decorrelated [13], i.e., knowing the relation between luma and
NIR intensity does not give us any information about the relation
between hue, saturation and NIR intensity.
Thus the corresponding probabilities are independent. The final
probability for each sample can be calculated by multiplying the
probabilities given from each analysis:

P(x ∈ Ai | T1, · · · ,T5) = PL ∩PT ∩PC = PL ×PT ×PC (22)

P(x ∈ Ai | T1, · · · ,T5) represents the probability of a sample x to
belong to a material category Ai according to feature values T1 to
T5.

EXPERIMENT
All samples were photographed in the visible and in the near-

infrared range of the spectrum in a controlled environment. The
camera we used in these experiments is a Canon EOS 300D and
the light source was incandescent. The photography operation
followed the same procedures for the two types of photographs
taken from the samples. The database on which the training and
testing were conducted consists of 30 textile, 5 tile, 8 linoleum
and 7 wood samples.
In order to determine how accurately this learning algorithm
will be able to predict a new sample’s material, leave-one-out
cross validation has been applied. When using the leave-one-out
method, the learning algorithm is trained multiple times, using all
but one of the data points and then testing the removed data point
and calculating the probability of that sample to belong to each
class.
For the entire database, the feature vectors are formed and the
probability of each sample having a certain feature vector, given
the material, is calculated. The probability of each sample be-
longing to each material given the feature vector is calculated ac-
cording to Eq. 22 for each left-out sample.
The algorithm was applied to all the samples in our dataset and
the probability of each left-out sample belonging to each material
category was calculated. The higher the probability, the better we
could come to the conclusion that the sample belongs to a certain
category.
To assess the usefulness of NIR information, the classification
was performed using visible features only (results in Table 2) as
well as using visible and NIR features (results in Table 3). We see

Textile Tile Linoleum Wood

Textile 25/30 0 0 5/30
Tile 0 6/6 0 0
Linoleum 0 7/8 0 1/8
Wood 0 0 1/7 6/7

Table 2: The confusion matrix using just visible information

Textile Tile Linoleum Wood

Textile 29/30 0 0 1/30
Tile 0 6/6 0 0
Linoleum 0 0 8/8 0
Wood 0 0 0 7/7

Table 3: The confusion matrix using both visible and NIR infor-
mation.

that the additional NIR information makes the proposed classifi-
cation more accurate. The wood and textile samples were clas-
sified better due to transparency of most of the colorants to the
NIR light in the sample; as a result the NIR images provide more
effective data.

CONCLUSION
In this paper, a database consisting of four different types

of materials was used. The images of all samples in the database
were taken in the NIR and visible part of the spectrum. The analy-
sis of luma, intensity, and color information of the two images re-
vealed that some of the pigments used to colorize some materials
are transparent to NIR. The relation between the visible and NIR
information yield an improvement in image-based machine classi-
fication. The materials were more accurately classified when NIR
information was present. The result and framework are suited
for the samples in our data base and they may not generalize to
more material classes. Our future work will focus on extending
the database by including more material classes such as plastic
and metal, as well as incorporating other texture analysis meth-
ods that are more scale invariant.

Acknowledgment
The work presented in this paper was supported by the

Swiss National Science Foundation under grant number 200021-
124796/1.

References
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