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Abstract 
Spectral imaging has advanced to reproduce the real colors 

under different illuminants. Since the high-precision spectral 
camera is expensive, multi-band cameras with 6~16 channels have 
been widely used. On the other hand, human vision is basically 
tri-chromatic and perceives a color based on metamerism. 
According to matrix-R theory, any spectral input C is decomposed 
into fundamental C* and metameric black B. Human vision 
perceives the fundamental C* as visible component but bypasses 
the metameric black B as invisible component. On the conditional 
color matching under a fixed illuminant, we need only the 
fundamental. However both of fundamental and metameric black 
are necessary under the different illuminants, because the 
objective spectrum C=C*+B changes with the illuminant. This 
paper proposes a new spectral sensing model with XYZ+K 
four-band filters. The additional filter K is designed to rescue the 
“metameric black” and restores the spectral reflectance in 
combination with “fundamental” captured by XYZ colorimetric 
tri-color filters. The paper clarifies the mathematical design 
concept for the spectral sensitivity curve of filter K based on 
matrix-R theory and shows how the proposed XYZ+K sensing 
model works well when applied to the parametric or 
non-parametric spectral estimators keeping with the colorimetric 
color reproduction. The paper also introduces a simulation on 
spectral image restoration under the different illuminants.  

Introduction 
Since high-precision spectral camera is expensive, the 

multi-band system1-3 supported with spectral estimation 
algorithms4-7 from low-dimensions have been developed actively. 
Singular Value Decomposition (SVD), Principal Component 
Analysis (PCA) or Wiener estimation methods provided a 
mathematical solution to this direction. However, the most of 
multi-band cameras have the following questions in the spectral 
design of multi-band filters.  
 
 

 
[1] The spectral sensitivity design rule is unclear and choice of 

filter set is often empirical. 
[2] The multi-band signals are not compatible with XYZ 

colorimetric reproduction. 
LabPQR is a spectral CMS model for answering these 

questions. Lab plus PQR reflects the colorimetric plus metameric 
black components. However, it needs multi-band camera for 
encoding the spectral input to LabPQR8. Once encoded to 
LabPQR, it works excellent in the colorimetric to spectral inverse 
estimation with trained color chips.  

The proposed model introduces a minimum set of XYZ+K 
four-band filters, where an additional filter K is designed to save 
the “metameric black” and restores the spectral reflectance in 
combination with “fundamental” captured by XYZ colorimetric 
tri-color filters. Different from LabPQR, the model needs neither 
spectral input camera nor encoding process but directly recovers 
the spectral input from the XYZ+K four-band signals.  

The projection from spectral to tri-color space is many-to-one 
and non-invertible. Cohen9 derived the matrix R to project 
n-dimensional spectrum onto 3-dimensional HVSS and clarified 
how it extracts the “fundamental” and ignors the “metameric 
black”. But both are necessary for the spectral imaging under the 
different illuminants.  

In the previous paper10, 11, the author proposed a simple 
method for the spectral estimation from XYZ using a strong 
correlation with the metameric black. It was useful for the 
specified color media such as photography or inkjet prints with the 
trained parameters but was substantially impossible to 
discriminate the metamers, because the XYZ system is blind to the 
metameric blacks. Since the “fundamental” is carried by XYZ 
value, first of all, the new model captures it by XYZ filters and 
next tries to rescue the lost “metameric black” by the additional 
filter “K” 12. 

The paper clarifies a spectral design of filter “K” based on 
matrix R theory and shows how it’s useful for spectral recovery in 
compatible with colorimetric reproduction. 

Fig.1 illustrates the basic concept of proposed XYZ plus K filter 
system for spectral imaging.

Figure 1 Conceptual Model of Spectral Recovery from XYZ plus K Filter system 
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Four-Band Model: Why XYZ +”K”? 
According to the matrix-R theory, a n-dimensional color 

spectrum C is decomposed into the fundamental C* (visible) and 
the metameric black B (invisible) as 
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Where, R denotes n × n projector onto HVSS derived from CIE 
color matching matrix A. 

The tri-stimulus value T =XYZ carries the fundamental C* 
that is the essential spectrum to human vision, while the 
metameric black B is neglected as invisible with zero-stimulus. 

Letting a XYZ input be T65 taken by sRGB camera for an 
input spectrum C65 under the illuminant D65, the fundamental C65* 
is invertible from T65 by pseudo-inverse projection as  
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Eq. (2) means the XYZ tri-color filter tacitly captures the 
fundamental spectrum C65*. 
While, the metameric black B65 is obtained by applying the 
projector RK=I-R to input C65 as 

RIRCRB KK −== ,6565         (3) 

The proposed model is equipped with a popular XYZ and the 
additional forth filter K to capture the metameric black. The filter 
K should have the spectral transmittance just same as projector RK. 
However it’s unrealistic to imitate RK exactly, because RK is a 2-D 
matrix with n-3 freedom of dimension (n=36, Δλ=10 nm: 
λ=380~730nm).  
Hence, the proposed model drastically reduces the dimension of  
RK to minimum 1-band filter K. Since the fundamental is exactly  
 

restored from XYZ filter designed to satisfy Luther condition, the 
final spectral error mainly depends on the estimation accuracy of 
the metameric black. Fig.2 illustrates why the forth filter should be 
“K” if compatible with colorimetric reproduction and if allowed to 
add one more filter at least, and shows how to estimate the spectral 
input from XYZ+K filter set. 

Design of Forth Filter “K” based on Matrix R 
Although it’s hard to save the exact the metameric black B65 

only by the 1-D filter K, the model approximates the projector RK 
by paying attention to the following structural features. 
(a) The j-th row vector Bj in RK is composed of the metameric 

black for the single spectrum δ(λj). 
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(b) The j-th element B65(λj) in B65 is given by the inner product 
of row vector Bj and input C65 as 
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Eq. (5) denotes the exact metameric black B65 is sensed by 
applying a 2-D optical filter with the transmittance Bj (λk) of RK to 
the camera input spectrum C65. 

Now, taking the scalar summation of the elements in the 
vector Bj as a weighting coefficient for C65, Eq. (5) is simplified 
decisively as 
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Figure 2 Why the forth filter should be K to save metameric black in compatible with XYZ? 
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The vector K represents the transmittance of objective 1-D filter K 
as a rough approximation for projector RK. Thus the metameric 
black B65 is given by a simple product of the 1-D coefficient 
vector K and the input spectrum C65. Geometrically, Eq. (6) means 
that the n × n matrix RK is reduced to n × 1 filter K by the 
integrated projection along the row (or column) direction. In other 
words, K is equal to the metameric black BEE for the illuminant 
EE with Equal-Energy Spectral Power Distribution. Indeed, in the 
case of C65=EE, Eq. (5) becomes  

KEERBEE == K       (7) 

Because EE includes all single spectra equally, K =BEE reflects all 
of the metameric blacks corresponding to the entire single spectra. 
In short, the filter K is simply interpreted to pick up the metameric 
blacks of single spectra weighted by the input spectrum C65 as 
given in Eq. (6).  

Fig.3 illustrates the geometric structure of 1-D filter K how 
it’s related to the metameric black BEE and formed as the 
integrated projection of RK to the row (or column) direction.  
However, since the metameric black BEE has partly negative 
responses, we can’t realize it as a physical filter K. The 

transmittance of optical filter K should satisfy positivity in all 
ranges.  

Assuming the spectral sensitivities of X, Y, Z, and K filter are 
linear independent, the forth filter K may be composed by a linear 
transform of them without changing any basic property. 

Letting the spectral response be BEE (λ) for the metameric 
black BEE, for example, we can design the spectral sensitivity of 
forth filter K with positivity by simply subtracting the minimum 
bias as a constant level as 

( ) ( )[ ] nm~nmforBminB)(K EEEE 7303800 =≥−= λλλλ (8) 

Otherwise, by a linear combination with CIE )(λx of filter X as  

( ) ( ) 0>+= λλλ xB)(K EE       (9) 
Thus, a novel four-band XYZ+K filter set with the spectral 
sensitivity S is formed as  

[ ] t)(K),(z),(y),(x λλλλ v=S      (10) 

Fig.4 illustrates the normalized spectral sensitivities of XYZ+K 
filter set in case of Eq. (9)

 
Figure 3 Basic profile of Filter K approximated by integrated projection to 1-D from 2-D RK 

 
Figure 4 Spectral sensitivities of filter K and normalized XYZK filter set  
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Spectral Estimation from XYZK Signal 
The optoelectronic signal Q from XYZ+K filter set is given by  

[ ] noisesystemK,Z,Y,X tt =+== eeCSQ ;65     (11) 

In order to estimate the input spectrum C65 from the four-band 
signal Q, the typical estimation algorithms are applied to the 
proposed model and its performance was evaluated as follows. 

Pseudo-inverse Solution 
Neglecting the noise e, a solution to minimize the norm 

(energy) of C65 is simply given by applying the well-known 
pseudo-inverse matrix Sinv as 
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This is easy to calculate without any a priori knowledge, but isn’t 
always a stable solution. 

Smoothed-inverse Solution 
Since the color objects in nature have the gentle and 

smoothed spectral shapes, minimum-norm estimation with the 
constrained smoothness provides the better solution.       
Taking the second derivative of spectral input C65 by applying the 
Laplacian operator D 
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Because δ reflects “edge” component, its quadratic norm will be a 
smoothness measure as 
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Now introducing Lagrange multiplier Λ to minimize Eq. (14) 
under the smoothing matrix N, 

( ) ( )QCSΛNCCC −+= 65656565
tttJ      (15) 

The scalar term J(C65) is minimized when its first derivative is 
zero 

( ) 02 656565 =+=∂∂ SΛNCCC /J      (16) 

Solving Eq. (16) under Eq. (11), we get the solution by modifying 
N to be non-singular as 
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Wiener-inverse Solution 
Wiener-inverse is a popular estimator to minimize MSE 

under the known statistics for signal and noise as follows. 
The bias term b is usually ignored as small, but here mC≅0.3 is 
used for general case13. 

( )

spectrainputofvectormean

iancevarnoise,matrixariancecov
,where

ˆ

t

t

=
−=

==
+=

+≅
−

C

CinvC

eeCC

eeCCCCinv

inv

m
mSWmb

RR
RSRSSRW

bQWC
1

65

       

(18) 

Though the true covariance matrix RCC is obtained from trained 
samples, the Markov model is useful for non-parametric Wiener 
estimation. Assuming a strong correlation with coefficient ρ 
between the adjacent spectral components, the covariance matrix 
RCC is modeled by 
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Finally, removing the illuminant D65 from 65Ĉ , the spectral 
reflectance r̂  is calculated by 
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nD,,D,D,ˆdiagˆ )()()( 652651656565

1
65 λλλ L=≅ − DCDr  (20) 

Experimental Results 
Spectral Reflectance Estimation for Color Chips 

The proposed model was tested for the spectral recovery of 
the typical color chips;  

(A) Macbeth chart, (B) IT8 chart, (C) Inkjet chip,  
(D) Acrylic paint chip in SOCS database 

The estimation accuracy depends on the performance of 
inverse-projection operator from the low-dimensional signal Q 
(n=4) to the high-dimensional spectrum (n=36). The parametric 
Wiener-inverse operator is fitted to the trained color samples, 
while the capability of non- parametric operator depends on how it 
can well imitate the parametric one without training. Fig.5 shows 
some examples of inverse-projection operator and the covariance 
matrix RCC.  

Fig.6 illustrates a result in the spectral reflectance estimation 
for #125 chip (skin color) in IT8 and #24 acrylic paint chip 
(permanent green light) in SOCS. The performance was improved 
from left to right, resulting best in parametric Wiener-inverse 
method for all of tested chips.  

Spectral Estimation Error 
Table1 summarizes the spectral estimation errors. The 

goodness of the XYZK filter will be measured by to what extent the 
Wiener-inverse reaches SVD, because SVD will be ideal for 
describing the target by the best-fit eigen functions under the 
limited order of freedom. The parametric Wiener-inverse 
(shadowed lists with asterisk mean trained by own chip) resulted 
in the best and its MSE reached nearly to the same level as 4-th 
order SVD. 

This tells the proposed XYZK filter is designed reasonably 
and works excellent in spite of only four bands.  

Table2 shows CIELAB ΔEab* under the changing viewing 
illuminants. The XYZK model clearly shows the error smaller than 
SVD, even if using the non-trained Wiener. It’s a great advantage 
superior to SVD due to the compatibility with XYZ.  
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Figure 5 Spectral estimation operators (upper) and covariance matrices (lower) 

 
Figure 6 Example of spectral reflectance estimated by parametric/nonparametric typical models 

Spectral Imaging under different Illuminations  
Finally, the spectral image rendition was tested under the 

different illuminants. Here the pseudo-spectral test images14are 
generated by embedding the spectral inkjet chip in each pixel of 
sRGB image taken under D65. The spectral chip matched to the 
pixel with minimum ΔEab* is picked up from the inkjet spectral 
palettes, each composed of n=36 bands (Δλ=10 nm). Fig.7 shows 
the images recovered from XYZK signal Q by non-trained 
Wiener-inverse. It looks just the same as true original when 
viewed under the same illuminant D65. The color changes under 
the other illuminants are also reflected to the colorimetric color 
reproduction with color differences less than those by SVD.  

Conclusions 
A novel XYZ+K four-band spectral sensing model is 

proposed. Based on matrix-R theory, the additional filter K is 
designed to save the metameric black lost by XYZ filter. The model 
worked nice in the parametric Wiener-inverse spectral estimation. 
Its accuracy almost reached SVD as an ideal model. Though the 
non-trained Wiener-inverse is surely worse than that of trained, it 
resulted in the colorimetric reproduction superior to SVD. The 
spectral image restoration is simulated under different illuminants 
with pseudo-spectral test images that the n=36-band inkjet spectral 
chip is embedded in each pixel and the model worked 

successfully. 
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Table 1 Spectral reflectance estimation accuracy in MSE (Mean Square Error) 

 

Table 2 Colorimetric errors in CIELAB ΔEab* (mean) under different illuminants  

 

 
Figure 7 Colorimetric rendition of spectral image recovered from four-band XYZK low-dimensional signals 
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