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Abstract
Many coloration applications require the match of a ref-

erence color under specific viewing and illuminating conditions
(primary conditions). Such so called metameric matches are,
however, unlikely in practice due to various noise sources in most
production processes. As a result the match is not perfect and the
real colors are rather grouped around the reference color. In this
paper we investigate such so called parameric colors under the
assumption that they follow a normal distribution with the refer-
ence color as expectation value. We analyze corresponding dis-
tributions of parameric reflectances and calculate the distribution
of colors if the viewing and illuminating conditions change (sec-
ondary conditions). A paramer mismatch gamut can be defined
by the 95% boundary ellipsoid of this distribution. Based on this
definition a formula is proposed to calculate its volume in terms
of CIELAB unit. In the experiments we compare the volumes of
95% boundary ellipsoids for primary and secondary conditions
and analyze the properties of a mismatch quantity that is defined
as the ratio of these volumes.

Introduction
Reflectances are called metamers if they match under one

viewing and illuminanting condition but mismatch under other

conditions. Sets of metameric colors were analyzed in various

studies with respect to spectral properties and behavior under dif-

ferent conditions (Metamer Mismatch Gamut). [1, 2, 3, 4, 5, 6]

This work was used to construct imaging and color reproduction

systems [7, 8, 9, 10, 11].

In practice, however, it is very unlikely that two different re-

flectances behave metameric and achieve an exact tristimulus-

match under the given viewing and illuminating conditions. Usu-

ally we have the situation that the tristimuli are very close to each

other and the colors might be either indistinguishable or only

slightly different. These reflectances are called paramers. The

viewing and illuminating conditions for that the reflectances are

paramers are denoted in this paper as primary or parameric con-
ditions.

Of special interest are paramers that fall below the just notice-
able distance (JND) to a reference color under parameric condi-

tions and their behavior under different conditions. In practice

the JND can also be replaced by a tolerable distance (TD). Refer-

ence colors are defined in many color-related standards and indus-

trial applications. Especially for the coatings or printing industry

such standards are highly important to ensure a consistent prod-

uct quality. Usually additional color tolerances are given since it

is unlikely that a production process is so precise that the resulting

color matches the reference exactly.
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Figure 1. Colors resulting from a production process following a normal

distribution with the reference color as mean value. The corresponding re-

flectances are called paramers.

In practice it is, however, unlikely that paramers resulting from

a production process uniformly fill the tolerance ellipsoid for

parameric conditions. Due to various noise sources in the produc-

tion process the resulting colors are distributed rather normally

with the reference color as mean (see Figure 1). In this paper we

investigate paramers following a normal distribution for specific

viewing and illuminating conditions (parameric conditions) and

their mismatch gamut if viewed under different conditions (sec-

ondary or non-parameric conditions). We do not consider sys-

tematic color shifts from the reference color that may result from

a biased production process for instance.

Our idea is to transform the normal distribution around the ref-

erence color from a color space for parameric condition to spec-

tral space in order to calculate the corresponding paramers. A

further transformation of this distribution into a color space for

non-parameric conditions allows the calculation of a paramer mis-

match gamut by boundary ellipsoids. All color- or spectral spaces

for which a distribution is calculated are shown in Figure 2.

Calculating Distributions of Paramers
In this paper we use the vector representation of spectra

by sampling them in the visible wavelength range at N equidis-

tant wavelength. The parameric conditions are described by the

spectral power distribution of an illuminant L1 and the CIE color

matching functions x̄1, ȳ1, z̄1 of the 2 or 10 degree observer. The

reference color a ∈ CIELAB is given in the CIELAB color space.

However, the concept explained below can be adapted to other

color spaces if desired. The colors that correspond to paramers

can be described by a random variable X1
CIELAB that follows a nor-

mal distribution p(x)

X1
CIELAB ∼ N (a,Ka) = p(x) (1)
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Figure 2. Transformation of distribution in this paper: The distribution of col-

ors resulting from a production process is transformed through different color

and spectral spaces from parameric conditions to non-parameric conditions.

where Ka is a 3×3 dimensional covariance matrix.

To calculate the paramers we need to transform this distribution

in a first stage to the CIEXYZ color space. We denote the color

space transformation from CIEXYZ space to CIELAB by L and

the inverse transformation by L −1. The resulting random vari-

able in CIEXYZ space follows the distribution

X1
CIEXYZ = L −1(X1

CIELAB) ∼
p(x)

|det(JL −1(x))|
∣∣∣
x=L −1(y)

= p(y) (2)

where JL −1(x) denotes the Jacobi matrix

JL −1(x) =
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Since L −1 is not linear the Jacobi matrix is not constant and the

distribution p(y) is not normal. To keep things simple we use a

common technique in noise propagation and approximate the non-

linear transformation L −1 by the first two terms of a multidimen-

sional Taylor series around the reference color a ∈ CIELAB. By

substituting L −1 in equation (2) by this truncated Taylor series

we obtain a rough approximation of p(y), which is again normal

p(y) ≈ N
(
L −1(a),JL −1(a)KaJL −1(a)T

)
(4)

We want to calculate the distribution of paramers, i.e. re-

flectances in spectral space, so that the corresponding tristimuli

for parameric conditions follow the normal distribution shown in

equation (4). For this reason we need additional knowledge of the

distribution of natural reflectances p(r) since we have to estimate

the distribution of N-dimensional paramers from a three dimen-

sional distribution of tristimuli p(y). For N >> 3 there are a lot of

possible solutions. To select the most reasonable out of these so-

lutions we require additional knowledge. Inspired by the assump-

tions used by the Wiener spectral estimation we assume a normal

distribution of natural reflectances p(r) = N (0,Kr), where Kr is

a N ×N dimensional covariance matrix of reflectances that can

be estimated by a toeplitz matrix [12] or using a set of repre-

sentative reflectances. It has to be noted that this assumption is

only a rough approximation of the real world. Investigations of

the distribution of reflectances show rather a β -distribution or a

mixture of normal distributions than a single normal distribution

[13]. Nevertheless, the Wiener estimation is successfully used for

spectral reconstruction in practice [14, 15] since it is a good com-

promise between simplicity and accuracy.

To increase our accuracy we can fit the normal distribution p(r)
also to reflectances resulting from colorant combinations used by

the productions process.

To calculate the distribution of paramers we first calculate the dis-

tribution of metamers for the reference color a under parameric

conditions. This can be done using Bayesian inference, since we

know the prior distribution of reflectances p(r) and the likelihood

function

z = DLr = Ωr (5)

where z ∈ CIEXYZ is the tristimulus, D is a 3×N dimensional

matrix containing the color matching function x̄1, ȳ1, z̄1 as row

vectors and L is the N ×N dimensional diagonal matrix contain-

ing the spectral power distribution L1 as diagonal elements. The

matrix Ω = DL is called the observer’s lighting matrix.

This likelihood function can be used to derive the second prior

distribution p(z|r) ∼ N (Ωr,Kε = 0). The posterior distribution

p(r|z) can be calculated by Bayes’ theorem and is again normal

[16]

Xmeta

r ∼ N (Wz,Kr −WΩKr) = p(r|z) (6)

W = KrΩT (ΩKrΩT )−1 (7)

where Xmeta
r describes the random variable that follows p(r|z). If

we transform this distribution to the CIEXYZ color space for the

parameric conditions we obtain

ΩXmeta

r ∼ N (ΩWz,Ω(Kr −WΩKr)ΩT ) (8)

= N (z,0) (9)

If we draw values from this distribution they result all in z since

the covariance matrix is zero. Hence N (0,Kr −WΩKr) can be

seen as the distribution of metameric black reflectances, i.e. all

reflectances that result in a zero tristimulus, and p(r|z) is the dis-

tribution of metameric blacks shifted by the fundamental metamer

Wz. Based on the assumption of a normal distribution of re-

flectances the distribution p(r|L −1(a)) might be seen as a rea-

sonable candidate of the distribution of metamers for the refer-

ence color a.

But how can this help us to derive a reasonable distribution of

paramers? The distribution p(r|L −1(a)) needs to be updated by

the distribution of all metamers for colors that follow the normal

distribution shown in equation (4). For each of these colors z we

need to calculate the fundamental metamer Wz and consider it as

a paramer. Speaking in terms of distributions this means that we

have to transform the normal distribution shown in equation (4) of

tristimuli to spectral space by the linear function W and add this to

the distribution of metamers for the reference color a. As a result

and assuming that the production process noise that causes the

deviation from the reference color a is statistically independent

from metameric reflectances we have the following distribution
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of paramers

X para

r ∼ N (WL −1(a),Kr −WΩKr +WKpW T ) (10)

W = KrΩT (ΩKrΩT )−1 (11)

Kp = JL −1(a)KaJL −1(a)T (12)

where X para
r is the random variable of paramers. Figure 3 shows

the difference of metamers and paramers.

Transforming X para
r to CIEXYZ color space for parameric condi-

tions results in the normal distribution shown in equation (4), i.e.

ΩX para

r ∼ N
(

ΩWL −1(a),

Ω(Kr −WΩKr +WKpW T )ΩT
)

(13)

= N
(
L −1(a),JL −1(a)KaJL −1(a)T

)
(14)

Paramer Mismatch Gamuts
Since paramers do not match even for parameric conditions

the term mismatch gamut is somehow misleading. Nevertheless,

we use the term paramer mismatch gamut to denote the gamut of

paramers in a color space for non-parameric conditions according

to the term metamer mismatch gamut for metamers.

The non-parameric conditions are described in this paper by the

illuminant L2 and an observer with the CIE color matching func-

tions x̄2, ȳ2, z̄2 of the 2 or 10 degree observer. To calculate such

gamuts within the CIELAB color space we need to transform the

distribution of paramers in a first stage into the CIEXYZ color

space for non-parameric conditions. According equation (5) this

is a simple linear transformation with a different lighting ma-

trix Ω̃ = D̃L̃, where D̃ is a 3×N dimensional matrix containing

the color matching function x̄2, ȳ2, z̄2 as row vectors and L̃ is the

N×N dimensional diagonal matrix containing the spectral power

distribution L2 as diagonal elements.

The resulting distribution in CIEXZY color space for non-

parameric conditions has the following form

X2
CIEXYZ ∼ N

(
Ω̃WL −1(a),Ω̃(Kr −WΩKr +WKpW T )Ω̃T

)
(15)

where X2
CIEXYZ is the random variable following this distribution.

In order to transform this distribution into the CIELAB color

space we use the first two terms of the Taylor series for L around

the mean ã = Ω̃WL −1(a) similar to the approximation in the pre-

vious section. The resulting distribution can be written as follows

X2
CIELAB ∼ N (L (ã),Km) (16)

Km = JL (ã)
(

Ω̃(Kr −WΩKr

+WKpW T )Ω̃T
)

JL (ã)T (17)

where JL (ã) is the Jacobi matrix of L evaluated at position ã.

This normal distribution allows us to calculate the parameric mis-

match gamut, which we define as the ellipsoid that contains 95%

of the colors drawn from this distribution. Such ellipsoid is de-

fined as follows:

(L (ã)− x)Km(L (ã)− x) = χ2
3 (18)
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Figure 4. 95% boundary ellipsoids shown for non-parameric conditions

corresponding to 1. metamer mismatch gamut 2. paramer mismatch gamut

where χ2
3 = 7.81 is the 95% quantile of the χ2 distribution with

three degrees of freedom.

It is also easy to calculate the volume of such ellipsoid in terms of

CIELAB units using the following formula

Vol(Km) =
4π
3

[χ2
3 ]3/2

√
det [Km] (19)

This allows us to relate the volume of the ellipsoid for parameric

and non-parameric conditions in order to get a single quantity of

mismatch

Mismatch(Ka,Km) =
Vol(Ka)
Vol(Km)

(20)

Computational Experiments
We are interested in the increase of paramer mismatch

gamuts if we increase the variance of the distribution for

parameric conditions. For this reason we calculate the mismatch

quantity defined in equation (20) for different parameters: We use

the illuminants CIEA, CIED65 and CIEF11 for parameric as well

as for non-parameric conditions. We chose the CIE 2 degree ob-

server for all experiments. This results in nine different combina-

tions of conditions.

To calculate the reference colors for parameric conditions we use

the spectra of 1269 Munsell color chips freely available at the

Information Technology Dept., Lappeenranta University of Tech-

nology, Finland. These spectra are also used for deriving the co-

variance matrix Kr of reflectances.

The covariance matrix Ka that describes the uncertainty in the

CIELAB color space around the reference color is chosen as fol-

lows:

Ka = σ2

⎛
⎝

1 0 0

0 1 0

0 0 1

⎞
⎠ (21)

where σ2 varies between 0.12

χ2
3

, 0.22

χ2
3

, . . . , 32

χ2
3

and χ2
3 = 7.81. This

corresponds to 95% boundary spheres with an radius of ΔE∗
ab =

0.1,0.2, . . . ,3.
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Figure 3. Left: Metamers drawn from the distribution shown in equation (6) for a specific reference color. Right: Paramers drawn from the distribution shown

in equation (10) for the same reference color. The distribution in color space for parameric conditions is set in a way that 95% of the colors fall into an spehere

with radius ΔE∗
ab = 1 centered at the same reference color.

Results and Discussion
Figure 5 shows the results for the volume ratio defined in

equation (20). The volume ratio is a number between 0 and 1.

Smaller values show a larger mismatch. The number 0 is the spe-

cial case if the paramers are in effect metamers, i.e. the covariance

matrix Ka is zero and all colors match under parameric conditions.

The number 1 occurs if the conditions do not change. Only six

of the nine investigated combinations of conditions are shown in

Figure 5 and 6. We also investigated the remaining combinations

of illuminants CIEA - CIEA, CIED65 - CIED65 and CIEF11 -

CIEF11. These result always in a volume ratio of 1 as expected,

i.e. the volume of the 95% ellipsoid does not change if calculated

by the covariance matrix Ka or by the covariance matrix Km as

shown in equation (17).

As can be seen from Figure 5 the volume ratio is nearly linearly

related to the radius of the 95% boundary spheres under parameric

conditions.

Figure 6 shows the relationship between the average 95% bound-

ary ellipsoids’ volumes for parameric and non-parameric condi-

tions. Here the curves can be well parametrized by three parame-

ters α,β ,γ representing gain, offset and gamma (GOG), i.e.

Vol(Km) = αVol(Ka)γ +β . (22)

The offset β is the average volume of the metamer mismatch

gamuts and marks the ordinate intercept of the curves shown in

Figure 5.

Figure 7 shows some examples of paramer and metamer mis-

match gamuts. We can see that the size and shape of the mismatch

ellipsoids depends on their location in color space. Also the gain

in size of the paramer mismatch gamuts compared to the metamer

mismatch gamuts varies at different locations in color space. This

indicates that missing the reference color under parameric con-

ditions caused by production process noise is not so critical for

some reference color coordinates if the object is observed under

non-parameric conditions. In this context critical means that the

possible color shifts for non-parameric conditions caused by miss-

ing the reference color for parameric conditions do not exceed the

intrinsic uncertainty of metamerism.

It needs to be mentioned that the proposed method of calculating

the distribution of paramers and paramer mismatch gamuts is only

a rough approximation. In addition to simplified assumptions of

the distribution of reflectances and the use of the first two terms of

the Taylor series to approximate the non-linear color space trans-

formations the physical properties of reflectances are not taken

into account. These are mainly positivity and boundedness. As a

consequence the paramer mismatch gamuts might be smaller than

calculated in the experiments.

All these restrictions can be included into the calculations but the

complexity would gain drastically. A possible solution would

be the use of Monte Carlo methods similar to calculations of

metamer mismatch gamuts [17]. The aim of this work was, how-

ever, to give a close formula of the distribution of paramers and

the volume of the paramer mismatch gamut. It should allow the

reader to reimplement the formula with the simplest means to get

an idea about the paramers and the paramer mismatch gamut. The

formula can be seen as a compromise between accuracy and com-

plexity.

Conclusion
In this paper paramers and paramer mismatch gamuts are in-

vestigated assuming that the parameric colors for specific viewing

and illuminating conditions (parameric conditions) follow a nor-

mal distribution with a reference color as expectation value. To

calculate the distribution of corresponding parameric reflectances

(paramers) this distribution is transformed into spectral space. A

further transformation into a color space for different viewing

and illuminating conditions allows the determination of the dis-

tribution of corresponding colors for non-parameric conditions.

Paramer mismatch gamuts are calculated using 95% boundary

ellipsoids of such distributions. A simple formula allows the
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Figure 7. Left: 95% boundary spheres (radius: ΔE∗
ab = 1) of Munsell colors in the lightness range 55 < L∗< 65 for illuminant CIED65 under parameric conditions.

Middle: Corresponding paramer mismatch 95% boundary ellipsoids and right: metamer mismatch 95% boundary ellipsoids for illuminant CIEA.
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Figure 5. Parameric mismatch in terms of the volume ratio between 95%

boundary ellipsoids for parameric and non-parameric conditions. The smaller

the value the larger the mismatch.

calculation of the volume of these gamuts in terms of CIELAB

units. Experiments show a functional relationship between the

average volumes of the 95% boundary ellipsoids for parameric

and non-parameric conditions that can be described by a gain,

offset, gamma (GOG) model. The offset represents the average

volume of all metamer mismatch gamuts corresponding to the ref-

erence colors. The volume of the paramer mismatch gamuts and

their gain in size compared to corresponding metamer mismatch

gamuts depends on the location of the reference color in color

space.
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