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Abstract
We present a new method of dynamic light effect generation

using stochastic models. Similar to dynamic lighting scenes in na-
ture, the resulting light effects are unpredictable, yet recognizable.
Furthermore, we present a method to learn the stochastic models
from a video source of a natural scene. The method extracts the
representative colors from the video and subsequently learns the
typical transitions between the colors. After the model has been
learned, the rendering of the effects has low memory and process-
ing requirements, making it suitable for implementation even on
embedded platforms. The recognition of the produced light ef-
fects was tested using a large user base and three automatically
created models and a hand crafted one. The results show the suit-
ability of the method for dynamic atmosphere creation, but also a
high appreciation of the produced light effects.

Introduction
Recent advances in lighting introduced a revolution in the

capabilities of lighting systems and elevate light to a status of a
new medium. The main drivers of the advance, solid state light
sources, enable lighting environments with a high spatial resolu-
tion, with fully controllable color and a wide range of dynamic
capabilities.

One of the characteristics of modern lighting systems which
is a large differentiator are the dynamic capabilities of the light
sources used. The normal operating mode of most of general use
traditional light sources, disco lights being one of the few excep-
tions, is static and they only have an on/off functionality or a lim-
ited dimming range. This is contrary to lighting conditions in na-
ture, which are inherently dynamic, from the slow change of the
intensity and the color temperature of daylight during one day, to
the fast flashes of lightning in a thunderstorm. Furthermore, most
of the light effects we experience in nature are unpredictable on a
certain timescale.

The new capabilities also introduce new challenges as the
number of controllable parameters is much higher compared to
traditional lighting systems. As a result, the standard control
paradigms used in traditional lighting systems become ineffective
and a novel representation of the problem is needed to tackle the
complexities.

One of the ways to simplify the control of modern lighting
systems is to use a different medium, for example text, images,
or video, as a representation of the desired ambiance and transla-
tion algorithms to translate it to the available light sources. This
enables the users of the system to control it by simple to find ex-
amples. Due to the fact that the user directly selects the final effect
and consequently a set of algorithms compute the control values
of the light sources to realize the effect, this control paradigm is
an example of the so called effect driven control.

In this paper, we propose a new method for generation of

light effects which are locally unpredictable and non repeating,
but resemble a natural light effect. The generation is done by sim-
ulating the execution of a stochastic process. The use of a simple
stochastic process, a first order Markov chain, simplifies the cre-
ation of the stochastic models without a significant sacrifice on
the expressive power. Furthermore, we present an unsupervised
learning algorithm that produces a model based on a video of a
natural light effect. To measure the recognizability and desirabil-
ity of the produced light effects, a large scale user test was carried
out, the results of which are presented.

Stochastic models for light effects genera-
tion

A model of a stochastic (random) process X , X =
{X1,X2, ...,XN}, is a set of rules that characterize the joint proba-
bility distribution between all its random variables. The simplest
model is the one where the random variables X1,X2, ...,XN are
independent and identically-distributed (i.i.d.). For many natural
processes, however, the assumptions, specially the assumption of
independence of the random variables, are unrealistic. An often
used generalization from the i.i.d. processes comes in the class of
Markov processes.

The probabilistic behavior of a Markov process is deter-
mined only by the dependencies between a subset of successive
random variables. In the case of a first order Markov process the
behavior is determined by the dependencies of immediate succes-
sors - between X1 and X2 , between X2 and X3 , etc. Despite their
apparent simplicity and restrictions, Markov chains are rich in be-
havior, amenable to analysis, and adaptable to many applications,
from weather to baseball prediction. They are centrally important
to applied and theoretical probability. In the context of this work,
we concentrate only on Markov models with discrete times and a
finite number of states, or finite state space Markov chains.

Notably, one of the uses of Markov chains close to the one
presented in this paper is for generation of media. The applica-
tion that motivated the development of Markov models, text gen-
eration based on rules, has been used in a wide array of artificial
intelligence applications. The rules in the model are in the form
of conditional probabilities on the succession of words, learned
from a large corpus of example content. Testing the performance
of text processing algorithms often uses text content generated
using Markov chain Monte Carlo [1]. An interesting and hu-
morous example of the recognizability of the produced text by
a random process related to Markov chains is the random scien-
tific paper generator [2], which produced a “scientific paper” that
was accepted on a conference with a questionable review process.
Markov chains have been used for modeling music [4] and for
automatic generation of music [3].

In Markov chain applications, the index t in Xt is usually
thought of as a time index. Xt represents the state of the Markov
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chain model of the process at “time” t. Formally, a Markov chain
is a sequence X = {Xt}t≥1 = {X1,X2, ...} of random variables tak-
ing values in a discrete set E , and a matrix of conditional prob-
abilities A = (pi j), called the transition probability matrix. The
elements of E are called states. The elements of the transition
probability matrix pi j give the probability that the process will be
in a state j at “time” t +1, given that it was in state i at “time“ t,
pi j = {Xt+1 = j|Xt = i}.

To use a Markov chain as a model of a process, the process
has to be represented as a time varying sequence of a finite number
of unique states. In the case of light effect creation, this represen-
tation is a natural one. In this case, the states can be mapped to
single colors on a particular luminaire or a probability distribution
in a color space.

The set of states of a simple example light effect, a night sky
with lighting, would have two colors, a dark blue one and a warm
white one. The transition probability matrix of such an example
light effect is also simple. The dark blue color state would have a
high probability of not changing state and a very small probability
of changing state to the warm white state, while the warm white
state would have a very small probability of not changing the state
and a large probability of transition to the dark blue state. In more
complex examples the state space of the process can be a set of
probability distributions instead of single colors. In the above ex-
ample of a stormy night, the warm white state can be substituted
with a three dimensional Gaussian distribution in a color space
centered around a warm white color.

Given a Markov chain with a set of states and the transition
probability matrix, a light effect can be generated by simulating
the Markov process. The starting state of the system can be a
user set state, a random state or the most probable state of the
Markov chain. At regular time intervals, a new state of the system,
and thus a new color of the luminaire is computed by sampling
from the distribution given by the transition probability matrix.
As the new state only depends on the current state of the sys-
tem, the sampling of the distribution is carried out by generating
a uniform U([0,1)) random number and based on that number a
search through the cumulative distribution of the transition prob-
abilities for the given current state. The implementation of this
operation is straightforward and computationally cheap, making
it ideal for implementation on embedded platforms. The suitabil-
ity for embedded use is boosted by the small memory requirement
of the generated model, that is quadratic to the number of states.
Additionally, if a central control is used to control multiple light
sources, only one copy of the model is needed for all of the light
sources.

Learning
Given a video of a light effect, the following method for

learning of a stochastic model of the light effect is proposed. As
the input to the learning algorithm, a video depicting the target
light effect is used. The learning of the model constitutes of three
main steps.

The first step is to extract representative colors from each
video frame. This is done using a central tendency estimator,
for example the sample mean or the sample color median, of
the colors present in the video frame. The first step transforms
the video into a discrete time sequence of colors representing the
video frames.

The second step is the clustering of the representative colors
from all the frames in the video into a small number of classes,
whose centroids will represent the states in the stochastic model.
The clustering is done by using the blurring mean shift algorithm
[5, 6] on the representative colors represented in a nearly percep-
tually uniform color space (CIEL∗a∗b∗). The blurring mean shift
is a density based algorithm that takes into account the local struc-
ture of the distribution in the clustering. The advantage of the
mean shift algorithm over standard clustering algorithms like k-
means is that the input parameter to the method, the size of the
kernel, can be set using a meaningful criterion, the minimum dis-
tance between two cluster centroids that are not merged during the
clustering. After the clustering, the colors in the time sequence are
substituted with their respective class representatives producing a
quantized time sequence. In case of complex states, the probabil-
ity distribution of every state can be estimated from the colors that
were clustered together to form the state.

Using the time sequence of class representatives, the state
transition probabilities are estimated using the frequency of tran-
sitions between consecutive states in the source material. Assum-
ing the time sequence is generated from a Markov chain, the fre-
quency of state transitions between consecutive states is a maxi-
mum likelihood estimator of the transitions probabilities.

User study
To validate the recognition rate and the desirability of the

produced light effects, a user study was conducted during a cor-
porate research exhibition. The study was designed with an appli-
cation of home scene setting in mind, which influenced the setup
and the method used.

Setup
Two luminaires were used, each having three independent

RGB LED light sources. The participant could only observe the
light reflected from a white surface and couldn’t see the light
sources or the encasing luminaires.

Stimuli
Four stimuli were used, three automatically created and one

hand crafted.
The first stimulus, fire was created from a video of a beach

fire. The second stimulus, underwater, was created from a low
resolution representation of an underwater scene. The transition
probabilities of the model were computed using the spatial neigh-
bor probabilities, resulting in an effect equivalent to the one pro-
duced from a video of a camera randomly moving over the scene
with a constant speed. The third stimulus, fireworks, was a man-
ually built impression of multicolored fireworks with periods of
faster and slower dynamics. The fourth stimulus, clouds, was cre-
ated from a time lapse video of a cloudy sky.

Two of the stimuli, fire and fireworks had fast dynamics, con-
trary to the other two, which had long term, smooth dynamics.
The stimulus fire had predominantly warm colors, the stimuli un-
derwater and clouds had cold colors and the stimulus fireworks
didn’t use a specific selection of colors.

Method
The desirability of the produced light effects was measured

using a seven point Likert scale [7]. For each of the stimuli, the
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Figure 1. Histogram of the maximum score over the four stimuly on the question ”I would like to have this light effect in my living room“.

participants answered the question ”I would like to have this light
effect in my living room“ on a scale from ”Not at all“ (-3) to
”Very much“ (3). Additionally, for each stimulus a set of ques-
tions measuring the recognition of the stimulus were asked. Four
recognition questions were asked for each stimulus, ”This effect
looks like a fire“, ”This effect looks like an underwater scene“,
”This effect looks like fireworks“, and ”This effect looks like a
cloudy sky“. The possible answers ranged from ”Not at all“ (-3)
to ”Very much“ (3).

The authors are aware of the possible bias on the recogni-
tion rate produced by naming the effects that were presented, but
considering the application of home scene setting, where the user
already knows the target effect she picked, this was not considered
a problem in the context of this study. Furthermore, including all
four effects in the questionnaire for each stimulus enabled a com-
putation of a confusion matrix, given in the results section. Us-
ing another method as for example free association, would have
resulted in a considerably longer testing time and would require
subjective evaluation of the results.

The order of presentation of the stimuli was balanced over
the participants. Additional to the questions, participants could
provide additional comments.

Participants
The study was conducted with 202 participants, 155 of which

male, with a minimum age of 24, a maximum age of 59 and a
median age of 35.5. 64 of the participants had experience working
with atmosphere providing light sources.

Results
Results on suitability of the produced light effects for use in a

living room environment show that the most desired stimulus was
clouds, with a median result of 2, followed by underwater, with
a median result of 1, fire with 0 and fireworks, which was scored
as highly unsuitable for the context and had a median score of
−2. As the stimulus fireworks was very dynamic, this result is
not surprising. It is unclear, though, both from the answers to

the questions and the additional comments given, what the rea-
son for the difference of desirability of the other three stimuli is.
Some people mention the color temperature as one of the reasons
they scored a certain light effect high or low, while others give
the dynamics as the primary reason. As there was no slow warm
stimulus, a conclusion on the relative importance of these factors
cannot be given.

To judge the overall desirability of the produced light effects,
the maximum score over the four stimuli was computed. Figure 1
shows a histogram of the resulting scores. As can be seen from the
histogram, the overall desirability was scored high, with a median
score of 2. This shows, together with the comments, that people
think that dynamic light effects can be suitable for use in their
living room, but only if the effects are very localized like the fire,
or very slow and subtle as the clouds and underwater stimuli.

Figure 2 shows the median result on the answers from the
recognition questions. The images in the row header depict the
stimulus that was presented to the participant. The median of
the scored similarity to the effects given in the column header
is given in the figure. The general recognition rate of all the ef-
fects is high, with most of them having a median score 2 for the
matching stimulus. The most easily recognizable effect wes the
fireworks, while the most confused one was the underwater. An
interesting effect can be seen in the confusion of the underwater
and the clouds stimuli. While when presented with the underwa-
ter stimulus, participants scored equally high for both underwater
and clouds, when presented with the clouds stimulus, the score for
clouds was significantly higher than the score for underwater. It
was also observed that the effect persists over different orderings
of the stimuli. This additionally shows that different light effects
have a different range in which they can be recognized and for
some of them that range can be very large.

Conclusions
A new method of dynamic light effect generation using

stochastic models was presented. Similar to dynamic lighting
scenes in nature, the resulting light effects are unpredictable, yet
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Figure 2. The median response of the participants to the question ”This effect looks like ...“ for all stimuli.

recognizable. Next, a method to learn the stochastic models from
a video source of a natural scene was shown. The method extracts
the representative colors from the video and subsequently learns
the typical transitions between the colors. After the model has
been learned, the rendering of the effects has low memory and
processing requirements, making it suitable for implementation
even on embedded platforms. The recognition of the produced
light effects was tested using a large user base and three automati-
cally created models and a hand crafted one. The results show the
suitability of the method for dynamic atmosphere creation, but
also a high appreciation of the produced light effects.
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