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Abstract
We introduce a new model that consists of a color classifier

followed by four non-square matrices for forward characteriza-
tion of display devices (i.e. predicting the XYZ value of a dis-
played color when the input RGB value is known). As this for-
ward model is not directly invertible, we present a framework for
developing an optimal inverse of the forward model for character-
izing display devices in the opposite direction (i.e. predicting the
RGB value that should be sent to a display to obtain a known XYZ
value). Finally, we discuss a method to assess the discontinuity
issue of these two models on the boundaries between the color
classes, and a technique which we call “overlapping training” to
handle this issue. Our experimental results show that these new
models outperform the conventional models with a single 3×3 or
3×10 matrix.

Introduction
The primary goal of display characterization is to develop a

forward mapping from a device-dependent RGB space (or non-
linear RGB space) to a device-independent color space, and vise-
versa. Currently, the two most common approaches to display
characterization are the lookup-table (LUT)-based method and
the model-based method. The former often provides better ac-
curacy, is easy to implement in hardware, but requires large mem-
ory and many measurements. Moreover, it is quite difficult to
implement an inverse characterization process with a LUT-based
approach [1,2]. On the other hand, the latter approach is sim-
pler, does not require large memory and as many measurements
as the former, but is generally less accurate. In this paper, we

Figure 1. The conventional forward characterization model using a single

matrix. The abbreviations are abs−absolute, nor−normalized, lin−linear, and

nonl−non-linear.

propose some techniques to enhance the accuracy of the model-
based method. Figure 1 shows a diagram of a conventional for-
ward model that has been widely used for CRT and LCD mon-
itors [1]. The model consists of two main parts: a linearization
module for linearizing a non-linear RGB input to a linear RGB
value, and a single 3×3 matrix M for transforming the linear RGB
value to a device-independent CIE 1931 XYZ [3] (or XYZ) value.

* This research was supported by a grant from the Indiana 21st Cen-
tury Research and Technology Fund.

Recent studies have proposed several methods for optimizing the
3×3 matrix by minimizing the transformation errors in the XYZ
space, such as the Linear Regression and White-Point Preserving
Least-squares (WPPLS) methods [4], or better in the 1976 CIE
L∗a∗b∗ (or LAB) space [5], such as the Delta E Minimization
(DEM) and White-point Preserving Delta E Minimization (WP-
DEM) methods [6]. In the WPPLS and WPDEM methods, the
3×3 matrix is constrained to guarantee that the reference white
point, an important factor in color reproduction, is preserved. Al-
though this model works quite well for many applications, for ap-
plications that require highly accurate characterization, this con-
ventional model is not always satisfactory. In this case, we need a
more complex model in order to obtain the desired level of accu-
racy.

As shown in [4, 6], the constraint setting for white point
preservation always produces considerably higher errors for the
colors that are not close to the neutral axis. This observation es-
sentially suggests that we partition the color space into several
classes, and just apply the constraint to the transformation corre-
sponding to the class that contains the neutral colors. This ap-
proach will reduce the effect of the constraint setting while still
preserving the white point of the device.

Additionally, the use of the linear 3×3 transformation is
based on the assumptions that the linearization step works per-
fectly to linearize the non-linearity of the non-linear RGB inputs,
and that there is no interaction between channels. This assump-
tion is generally not satisfied, especially for LCD devices whose
tone characteristics are quite difficult to model [1, 8, 9]. In this
case, the use of a single 3×10 matrix is recommended instead
[8, 9]. To further increase the accuracy of the model, we propose
to use four 3×11 matrices to characterize an LCD display.

As far as we know, there has not been a clear description in
the literature of how to develop the inverse for a forward char-
acterization model that uses a non-square matrix. In this paper,
we introduce a framework for developing an optimal approximate
inverse for a forward model with multiple 3×11 matrices. This
framework can be easily adapted to the development of the in-
verse for a model with a single non-square matrix too. Once the
forward model is available, the development for the inverse model
can be accomplished totally in software with no additional mea-
surements.

In the two proposed models, we use different transformations
for different color classes. This might cause some discontinuities
on the boundaries between the neighboring color classes. In this
paper, we also propose a technique which we call “overlapping
training” to deal with this problem.

Throughout the paper, we will denote our new forward and
inverse models with multiple 3×11 matrices as F-MM11 and I-
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Figure 2. Forward model with multiple 3×11 matrices (F-MM11). The inner

dotted rectangle indicates what is referred to later in this paper as the core

part of the F-MM11 model.

MM11, respectively. For simplicity, unless we need to simul-
taneously refer to both the absolute and normalized linear RGB
values, we will use the notation RGBlin to refer to the latter. We
will also assume that display devices use one 8-bit unsigned inte-
ger per channel to represent colors in the non-linear RGB space.
The remainder of the paper is organized as follows: Next, we
will describe the development of the F-MM11 and I-MM11 mod-
els. Then, we will present the experimental results for the pro-
posed models with a particular LCD display. After that, we will
discuss the overlapping training technique for smoothing the po-
tential contour artifacts. We will conclude the paper in the final
section.

Forward Model With Multiple 3×11 Matrices
(F-MM11)

Figure 2 shows a block diagram of the F-MM11 model.
We denote the matrices specifically developed for the four color
classes: Neutral, Red, Green, and Blue as MN , MR, MG, and MB,
respectively. The box V in Fig. 2 generates V lin

RGB from RGBlin.
V lin

RGB is an 11×1 vector containing the cross-product and second-
order terms of the components of RGBlin.

V lin
RGB = [Rlin,Glin,Blin,

(
Rlin
)2

,
(
Glin

)2
,
(
Blin
)2

, (1)

RlinGlin,RlinBlin,GlinBlin,RlinGlinBlin,1]T .

Let us describe first the method for classifying the RGBlin

space, and then the framework for the development of the 3×11
transformation matrix for each color class.

Color Classification in the RGBlin Space
We adopt a method described in [7] to classify the RGBlin

space into four classes, namely Neutral, Red, Green, and Blue.
Given a color described by Rlin, Glin, and Blin, the classification
is performed by first projecting this color onto the chromaticity
rgb diagram using

r =
Rlin

Rlin +Glin +Blin , g =
Glin

Rlin +Glin +Blin , (2)

b =
Blin

Rlin +Glin +Blin
.

We then transform the r, g, and b values to pq coordinates for ease
of computation:

[
p
q

]
=

[ − 1√
2

1√
2

0

− 1√
6

− 1√
6

2√
6

]⎡
⎣

r
g
b

⎤
⎦ . (3)

Figure 3. The color classification in the pq diagram for the RGBlin color

space.

Finally, based on the location of the color in the pq diagram,
we determine the class to which the color belongs. As shown
in Fig. 3, the Neutral class is bounded inside a circle centered at
white point W (where r = g = b) with an appropriate radius. In
this research, we choose a radius of 0.15 in accordance with [7].
The three other color classes are distributed symmetrically around
the Neutral circle. For example, the Red class is bounded inside
the lines JF , FR, RH, HK, and the arc KJ. The Green and Blue
classes are defined similarly. These lines are used to determine
the class to which a particular color belongs. A color on the bor-
der between two or three neighboring color classes is assigned to
the class with the highest priority, according to the prioritization
N > R > G > B.

Transformation Matrices
We develop the transformation matrix for each color class

independently using a framework shown in Fig. 4. This frame-
work is formulated as an optimization problem in which the 33
entries of Mc (c = N, R, G, or B) are the independent variables
of a cost function that reflects the total transformation error in ΔE
units† . In our research, we choose the root mean square error in
ΔE computed over a training set as the cost function. The training
set for each transformation matrix includes the samples of the cor-
responding color class taken from a 6×6×6 grid uniformly span-
ning the entire non-linear RGB cube. In order to have enough
training samples for the matrix MN , in addition to the Neutral
samples in the 6×6×6 grid, we include in the training set 40 addi-
tional samples obtained by uniformly sampling the Neutral class.
Among these additional samples, there are ten samples from the
neutral axis. To preserve the white point, we set a constraint on the
transformation matrix MN to ensure that the white color as well
as the samples on the neutral axis are transformed accurately. The
other transformation matrices are optimized freely without any
constraint setting. In this way, the constraint setting on MN will
not affect the accuracy of the colors in the other classes. Pattern
Search [10], a strong derivative-free constrained optimization al-
gorithm, is used for this optimization.

Inverse Model with Multiple Non-Square Ma-
trices (I-MM11)

In this section, we will introduce a framework for developing
the I-MM11 model that is the optimal approximate inverse of the
non-invertible model F-MM11. A block diagram of the I-MM11
is shown in Fig. 5. Similar to the F-MM11 model, the I-MM11
model also contains a color classification module to classify the

† ΔE is the Euclidean metric computed in the 1976 CIE L∗a∗b∗ color
space.
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Figure 4. The framework for developing the 3×11 matrix for a given color

class c, (c = N, R, G, or B). The abbreviations are: meas−measured and

pred−predicted.

Figure 5. Approximate inverse (I-MM11) to the forward model F-MM11 with

multiple 3×11 matrices shown in Fig. 2. The gamma correction module is

the inverse of the linearization step in the F-MM11 model.

device’s gamut in the XYZ space into four color classes: Neutral,
Red, Green, and Blue. However, these four color classes need not
be the same as the classes defined in the RGBlin space. Thus, a
given color RGBlin

0 on the input side of the F-MM11 model might
map to a color XY Z0 at the output of the F-MM11 model where
RGBlin

0 belongs to a certain class c, but XY Z0 belongs to a dif-
ferent class c∗ ∕= c. To distinguish between the color classes for
the two models, we name the color classes in the XYZ space as
Neutral*, Red*, Green*, and Blue*, and denote them as N∗, R∗,
G∗, and B∗, respectively. We also use a non-linear 3×11 mapping
between the XYZ space and the RGBlin space for each class.

⎡
⎣

Rlin

Glin

Blin

⎤
⎦=

⎡
⎣ MI

c∗

⎤
⎦
⎡
⎣ PXYZ

⎤
⎦ ; (4)

where MI
c∗ , c∗ = N∗, R∗, G∗, or B∗, is the 3×11 transforma-

tion matrix corresponding to color class c∗, and PXYZ is an 11×1
vector that contains the cross-product and second-order terms of
XY Z.

PXYZ =
[
X ,Y,Z,X2,Y 2,Z2,XY,XZ,Y Z,XYZ,1

]T
. (5)

Again, let us first describe the color classification in the XYZ
space, and then the framework for developing the MI

c∗ matrices.

Color Classification in the XYZ Space
The color classification is performed in the xy chromaticity

diagram as illustrated in Fig. 6. In this diagram, R, G, and B
are the three primaries which form the gamut triangle of the dis-
play. The lines RE, GF , and BH intersect at W—the reference
white point. The N∗ class is bounded inside a circle centered at
W with an appropriate radius. In this research, we chose a radius
of 0.083 in the xy diagram that approximately corresponds to the

Figure 6. The color classification in the xy chromaticity diagram for the XYZ

color space.

radius of 0.15 for the N class in the pq diagram. The regions of
the other classes are very similar to those for the classification in
RGBlin shown in Fig. 3. For example, the R∗ class is bounded
inside the lines JF , FR, RH, HK, and the arc KJ. Colors that fall
on the boundary between two or more classes are assigned to a
class based on the same prioritization used for the classification
of RGBlin colors.

Transformation Matrices
To determine each matrix MI

c∗ , (c∗ = N∗, R∗, G∗, or B∗), we
formulate an optimization problem. Figure 7 shows a block di-
agram of the framework. In the framework, the F-MM11 model
is employed to generate the training data, and also is embedded
into the optimization process to train the optimal MI

c∗. The XYZ
training values are generated by feeding the F-MM11 model a
7×7×7 grid spanning the entire RGB cube, and then classifying
the generated XYZ values using the classifier in Fig. 6. Since this
generation stage is implemented completely in software, we save
a lot of time spent measuring the XYZ values on the actual mon-
itor. As shown in Fig. 7, each XY Z value from the training set
is directly converted to an LABre f value that will then serve as a
reference. On the other hand, the vector PXYZ obtained from the
components of XY Z is multiplied by the appropriate matrix MI

c∗ ,
which is being optimized, to obtain an RGBlin value. This RGBlin

value is put back to the core part of the F-MM11 model shown
in Fig. 2 to predict the corresponding XYZ value. The predicted
XYZ value is converted to LABpred , and finally compared to the
reference LABre f . The optimization algorithm is used here to min-
imize the differences between LABpred and LABre f averaged over
the training set to obtain the optimal matrices MI

c∗.
To preserve the white point, we set a constraint on the trans-

formation MI
N∗ corresponding to the N∗ class so that the XYZ

value of the white point is transformed exactly to the correspond-
ing RGBlin for the white point. The other matrices are optimized
freely without any constraint setting.

Experiments
We compare the accuracy of the F-MM11 model with the

model developed using the WPDEM method in [6], and the model
with a 3×10 matrix developed using the method in [9]. We name
the former the F-SM3 model and the latter the F-SM10 model.
These two models are good candidates for the experiment since
they have been shown to provide better results than other conven-
tional model-based methods [6, 9]. All of the models were de-
veloped using a common training set, and tested with a common
testing set. They also shared the same linearization module which
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Figure 7. The framework for determining the matrix MI
c∗ for a given color class c∗, (c∗ = N∗, R∗, G∗, or B∗).

Table 1: Testing error statistics in ΔE units for the 3D-LUT and
the F-SM3, F-SM10, and F-MM11 models.

Classes Statistics 3D-LUT F-SM3 F-SM10 F-MM11

Neutral
Mean 5.33 1.3 0.75 0.36
Max 20.9 2.98 1.57 0.72
Min 0.68 0.08 0.07 0.04

Red
Mean 4.76 1.43 0.89 0.54
Max 10.59 3.32 2.4 1.12
Min 0.84 0.07 0.05 0.02

Green
Mean 5.55 1.71 0.84 0.49
Max 15.75 3.35 1.87 1.2
Min 1.28 0.11 0.09 0.1

Blue
Mean 6.85 2.78 0.89 0.53
Max 14.91 6.41 1.75 1.39
Min 1.83 0.61 0.11 0.10

was accomplished by applying three 1D-LUTs independently to
the three channels of the display. Each 1D-LUT was populated
by interpolating the measured luminance values of 64 digital lev-
els of the corresponding channel. The training set included the
samples from a 6×6×6 grid in the RGB cube augmented with
40 Neutral samples. The testing set included the samples from a
5×5×5 uniform grid in the RGB cube augmented with 43 Neutral
samples. No color was common to both the training and testing
sets. As a further test, we also built a six-node 3D-LUT (6×6×6)
using trilinear interpolation [2]. The target display device was a
Dell UltraSharp 2408WFP 24-inch LCD display‡ . Table 1 sum-
marizes the testing error statistics in ΔE units for these three mod-
els and the 3D-LUT. This shows the improvements obtained with
the F-MM11 model. It also shows that when we need very high
accuracy with a limited number of training points, the F-MM11
model is a better candidate than a 3D-LUT-based method.

Next, we compare how the inverse models performed to
characterize this LCD display in the reverse direction. As afore-
mentioned in the “Introduction” section, inverse characterization
with a 3D-LUT is quite difficult. Also, [9] does not describe how
to develop the inverse model corresponding to the F-SM10 model.
Consequently, in this experiment, we only compare the I-MM11

‡ Dell Inc. One Dell Way, Round Rock, Texas, USA.

Table 2: Testing error statistics in ΔE units for the I-SM3 and
I-MM11 models.

Classes Statistics I-SM3 I-MM11

Neutral*
Mean 1.47 0.64
Max 5.94 2.01
Min 0.21 0.17

Red*
Mean 1.67 0.65
Max 3.50 1.5
Min 0.13 0.08

Green*
Mean 1.53 0.88
Max 2.76 1.74
Min 0.26 0.18

Blue*
Mean 1.78 0.63
Max 3.74 1.54
Min 0.35 0.03

model with the inverse of the F-SM3 model, denoted as the I-SM3
model. Since the F-SM3 model is invertible, the I-SM3 model
was obtained simply by inverting the components of the F-SM3
model. The testing set was the same as that used for testing the
forward models. For each color in the testing set, we used the
following procedure to test the inverse characterization of the two
models:

1. Send RGB1 to the actual monitor, measuring its XYZ value
(denoted as XY Z1).

2. Use the inverse model to predict RGB2 from XY Z1. If the
model works perfectly, RGB2 = RGB1.

3. Send RGB2 to the actual monitor, measuring its XYZ value
(denoted as XY Z2).

4. Compute the difference in ΔE units between XY Z1 and
XY Z2.

Table 2 summarizes the error statistics of the two models. It
shows that the I-MM11 model outperformed the I-SM3 model in
the inverse characterization process.

Discontinuity Issue
Assessment of the Discontinuity

Since the F-MM11 and I-MM11 models use different trans-
formation matrices for the different color classes, there may be
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some discontinuities in the transformation on the boundaries be-
tween the neighboring color classes. To determine the extent to
which a characterization model is discontinuous, we use the fol-
lowing technique: Let f1() and f2() be two continuous transfor-
mations developed specifically for Class 1 and Class 2, respec-
tively. In the domain space, assume x0 is a color of Class 1 and
lies on the border between Class 1 and Class 2. Let S be a set of
neighboring colors of x0 in Class 1; and T be a set of the neigh-
boring colors of x0 in Class 2. If the transition at the boundary
between f1() and f2() is smooth, we expect that the difference
Δ computed using (6) should be close to or smaller than a visual
limit. In other words, if the transition is smooth, then with a small
change in the domain space, we will obtain a correspondingly
small change in the range space. To gain a sense of how small it
should be in the range space, we want it to be not too far away
from the maximum change we obtain when using only the con-
tinuous function f1() for both classes. This guarantees that the
behavior of the model using a combination of two different func-
tions f1() and f2() is similar to that of a model using only f1().
Thus, we define

d1 = max(∥ f1 (x0)− f1 (xi)∥) ; ∀xi ∈ S∪T,
d2 = max

(∥∥ f1 (x0)− f2
(
x j
)∥∥) ; ∀x j ∈ T,

Δ = ∣d1−d2∣ ;
(6)

where ∣∘∣ denotes absolute value, and ∥∘∥ is a color difference
metric.

As an example, we employed this technique to test the dis-
continuity of the F-MM11 model developed in the previous sec-
tion. The domain of the F-MM11 model is the non-linear RGB
space, and the range is the XYZ space. In the non-linear RGB
space, we consider two RGB1 and RGB2 values to be neighbor-
ing if their components differ from each other by an amount no
bigger than 1 unit−the smallest difference in the discrete RGB
color space. To obtain the non-linear RGB values of the colors
on the border between two classes, we first uniformly sample 30
points along their border on the pq diagram. We then convert
these points from the pq diagram to the rgb diagram using

⎡
⎣

r
g
b

⎤
⎦=

⎡
⎢⎣

− 1√
2

1√
2

0

− 1√
6

− 1√
6

2√
6

1 1 1

⎤
⎥⎦
−1⎡
⎣

p
q
1

⎤
⎦ . (7)

Corresponding to each converted point on the rgb diagram,
we uniformly sample the ray passing through that converted point
and the origin of the RGBlin coordinates to obtain 50 samples in-
side the RGBlin cube. Doing this for the 30 converted points on
the rgb diagram, we will obtain 1500 colors for each pair of color
classes. Finally, we transform these colors to the non-linear RGB
space. Each of these colors will serve as x0 in the aforementioned
test. For each x0, we classify its neighbors in the non-linear RGB
space to obtain the sets S and T . Using (6), we compute Δ in ΔE
units for each x0. Table 3 reports the maximum Δ value corre-
sponding to each pair of color classes.

From Table 3, we can see that on the boundaries between the
pairs Neutral-Red, and Red-Blue, there exist some pairs of colors
that could potentially cause contour artifacts (max Δ values are
near two ΔE units). They need to be smoothed out.

In the case of the I-MM11 model, the domain is the XYZ
space and the range is the non-linear RGB space. To avoid the ef-

Table 3: Discontinuity assessment on the boundaries between
the color classes for the F-MM11 model. (Δ is computed in ΔE
units using (6)).

Pair of Classes Max Δ
Neutral-Red 1.92

Neutral-Green 0.65
Neutral-Blue 0.57
Red-Green 1.24
Red-Blue 1.70

Green-Blue 0.76

fects of the quantization errors, the non-linear RGB space should
not be quantized for this experiment. Since the test for the I-
MM11 model is very similar to that for the F-MM11 model which
we have just described, we will not discuss it further here. Instead,
we will move right away to the discussion about the smoothing
technique.

Smoothing Technique
In addition to the solid borders between the neighboring

classes shown in Fig. 3 for the F-MM11 model, or Fig. 6 for the I-
MM11 model, we define “boundary regions” for each color class.
A color class, say Blue, has three types of boundary regions: Type
I (with Green or Red), Type II (with Neutral), and Type III (with
both Neutral and Green, or with Neutral and Red) as shown in
Fig. 8. However, the Neutral class has only Type II and Type III
boundary regions.

Figure 8. Three types of boundary regions between the Blue class and the

Neutral and Green classes. Assume the circle centered at the white point W

bounding the Neutral class has a radius of r. Then, the two dashed circles

centered at W in the figure have the radii of r+ l and r− l, respectively, where

l is a threshold used to define the boundary regions. Ai, (i= 1,2,3,4,5,6), and

Dj , ( j = 1,2,3) are the intersection points as shown in the figure. The lines

A2A3 and A4A5 are parallel to the solid border between the Green and Blue

classes. The distance between each line and this solid border is l. The Type

I boundary region between the Blue and Green classes is the area bounded

by the lines A2A3, A3A4, A4A5, and the arc A5A2. The Type II boundary region

between the Blue and Neutral classes is the area bounded by the arcs A1D1,

A2D2, and the lines A1A2, D1D2. The Type III boundary region between the

Blue class and the Neutral and Green classes is the area bounded by the

arcs A1A6, A2A5, and the lines A1A2, A5A6.

The smoothing technique is described as follows: In the
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Table 4: Assessment of the discontinuity between the Neu-
tral and Red classes before and after applying the overlapping
training technique.

Before After
Pair of Classes Statistics Δ (in ΔE) Δ (in ΔE)

Neutral-Red
Mean 0.36 0.31
Max 1.92 0.62
Min 0.0001 0.001

Table 5: Testing error statistics in ΔE units for the F-MM11
model in the Neutral and Red classes before and after applying
the overlapping training technique.

Classes Statistics
Before After

Error (ΔE) Error (ΔE)

Neutral
Mean 0.36 0.35
Max 0.72 0.68
Min 0.04 0.07

Red
Mean 0.54 0.53
Max 1.12 1.07
Min 0.05 0.18

training stage for the transformation matrix for a particular color
class, say Blue, instead of using only the training samples in the
Blue class itself, we include in the training set the samples of the
Neutral, Red, and Green classes that are in the boundary regions
with the Blue class.

As shown in Table 3, for the F-MM11 model, the disconti-
nuity is most severe in the boundary region between the Red and
Neutral classes. As an example, we apply the smoothing tech-
nique to this pair of color classes. We choose a threshold l of
0.06, an arbitrary small number in the pq coordinates, to define
the boundary region between the Neutral and Red classes. Ta-
ble 4 shows the statistics of Δ computed by (6) before and after
applying the smoothing technique, using the same set of testing
points. As shown in Table 4, the maximum Δ value after applying
the smoothing technique is reduced to 0.62 ΔE units, an accept-
able value. As the space of each class is extended, one might
expect that the characterization errors outside the boundary re-
gions would increase. Table 5 shows the comparison between the
testing error statistics for the F-MM11 model in the Neutral and
Red classes before and after applying the smoothing technique.
The before-smoothing-statistics are the same as those in the last
column of Table 1 for these two color classes. We see that al-
though the minimum errors do increase, the mean and maximum
errors actually decrease. This is not entirely surprising because
we would expect a more accurate transformation for colors in the
boundary region and a less accurate transformation for colors in
the center of each class region. Thus, there is clearly a trade-off
that makes the overall outcome difficult to predict.

Conclusions
In this paper, we have introduced a new forward model (F-

MM11) and a new inverse model (I-MM11), each of which con-
sists of a color classifier followed by four non-square matrices, for

display characterization. Our experimental results show that both
new models outperform in accuracy other previously reported
model-based methods. The framework which we have described
for developing the I-MM11 model is easy to implement. This
framework is also applicable to the development of the optimal
inverse for other non-invertible models with a single non-square
matrix. We have also discussed a method to assess the disconti-
nuity of these new models on the boundaries of color classes, and
proposed an overlapping training technique to handle this issue.
The results show that the overlapping training technique works
quite well to handle the boundary issue. Although our proposed
models are more complex than the conventional models with a
single matrix, the high accuracy that they can achieve without
many measurements makes them very useful in applications that
require highly accurate characterization.
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