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Abstract 
This paper describes a new method to select a non-uniform 
set of sample points specifying a color transformation in a 
more accurate way than achievable through the same 
number of uniformly distributed sample points. 
Furthermore, a specific accuracy can be achieved with far 
fewer non-uniform sample points. This has direct 
implications on the real-time processing performance and 
on the resources (ink, media, time) needed if the set of 
sample points induces a customized test chart for printer 
characterization. Although many practitioners implement 
color transformations as a piecewise linear interpolation 
using an n-dimensional Delaunay tessellation, this paper 
discusses the potential to achieve better results with a data-
dependent tessellation.  

1. Introduction  
Our company strives to integrate new imaging technologies, 

high quality products, and superior user experience with an open, 
de-facto industry standard color management system, providing 
outstanding color reproduction in a heterogeneous environment. 
Commercial printing customers expect solutions which first enable 
them to reproduce colors as accurately as possible on one device, 
second enable them to provide a consistent color appearance 
across a wide range of printing devices, and third enable them to 
produce pleasing reproductions using the full capabilities of each 
printing system. Today customers are no longer simply interested 
in individual printing devices, they want flexible and scalable 
solutions capable to address a number of simultaneous 
requirements. This paper focuses on how to achieve efficient, high 
quality color transforms. 

The motivation for using a Graphic Processing Unit (GPU) in 
a RIP is to address the speed demands of digital presses in an 
effective and scalable form. The abundant computational power 
can be used to overcome long-standing constraints on color 
transforms. Traditionally, non-linear color transformations (e.g. 
from CIELAB to CMYK) are approximated by multidimensional 
uniform color look-up-tables (CLUTs) applied in real-time during 
the ripping process to large documents (containing images, 
graphics and text). These CLUTs are used for speed purposes: 
Finding for each color pixel in an image an enclosing cube or 
tetrahedron in a uniform 3D CLUT and using values at the 
corresponding vertices to perform linear interpolations is very fast. 
Those CLUTs might be stored with some other simple syntax 
elements in ICC device profiles. Although by combining 3D 
CLUTs with 1D LUTs it is possible to encode data on a non-
uniform grid, the data still has to be on a regular grid. 

This implies several restrictions: First, the data on the regular 
grid has to be derived by some method (interpolation or inverting a 
printer model) from the original measurement data describing the 
device characteristic. Second, special attention has to be paid to 
ensure a high-quality reproduction of colors that are inside a 
device gamut, but close to the border. Third, if a regular CLUT is 
used to approximate a non-linear color transformation, a common 
way to increase accuracy is by increasing the number of entries in 
the CLUT, which can be expensive and is inefficient (uniform 
sampling increases samples in both over and under-sampled parts 
of the function). Last, but not least, there is evidence from 
sampling theory, computational geometry, and publications in 
color science [1, 2], suggesting it is advantageous to allocate more 
sample points to areas of high curvature.  

Monga et al. [2] proposed an iterative “sort-select-damp 
approach” where they calculate the significance of all node points 
based on curvature and an input importance function. At each 
iteration they select the node with highest significance. To avoid 
selecting new points too close to previously selected points, they 
introduce a fixed damping function. The solution proposed here 
follows a similar iterative approach, but integrates the dampening 
effect into the error function. Furthermore, the selection of a new 
point is determined by both local curvature and the tessellation 
achieved in previous steps.     

This paper proposes a simple and efficient node selection 
algorithm, generating a data-driven test chart (non-uniform 
sampling of the device space) whose corresponding device 
independent and dependent color values are used directly to 
perform the color transformation. Details and results from initial 
experiments will be reported in Section 2. Starting from a uniform 
CLUT it is straightforward to construct n-dimensional simplices 
(cubes or tetrahedra if n=3) to perform an image’s linear 
interpolation for individual color pixels, but for non-uniform 
sampling nodes a tessellation has to be calculated explicitly. Color 
scientists commonly use n-dimensional Delaunay tessellations to 
achieve well-shaped simplices. However, several publications [1, 
4, 5] in computational geometry and mesh refinement indicate that 
long, thin simplices can actually be desirable and result in a 
smaller approximation error than simplices obtained by a 
Delaunay tessellation. Section 3 will discuss the results we 
achieved by applying our error metric defined in Section 2 as a 
cost function for a tessellation optimization for an analytical 2D 
function and for a plane within a printer gamut. Section 4 
concludes the paper.   

2. Point Selection 
The problem can be formulated as a mathematical 

optimization problem. Test patches from a uniformly sampled 
device space (e.g. pRGB) are printed and measured (e.g.CIELAB). 
These samples form a superset from which we select a certain 
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number of “significant” samples, which, at each iteration, reduce 
the overall mean squared error. Those samples will be used for an 
efficient color transformation. Furthermore, the samples define a 
device and media specific test chart available for customers to 
characterize their specific devices. 

Let nm RRf →:  represent the transform from the printer 

color space Rm to a device independent color space Rn. This 
function is approximated by a piecewise linear function fS 
described by a large set of samples 

{ }liRppS m
ii ...2,1,: =∈= . Our goal is to select a subset 

of S, { }lkkjRppS m
jjsub ≤=∈= ,...2,1,: , so that the 

error, i.e., the Lp distance between fs and fsub is minimized. The Lp 
distance is defined as 

 [ ] pp
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where v is a multidimensional input variable; 
1subs ff − is 

called integral absolute error (IAE) and 
2subs ff − is called 

integral squared error (ISE).  
In the 1D case, a curve is approximated by line segments and 

the error is equal to the area between the line segments and the 
curve. Mathematically, the following error has to be minimized: 
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In the 2D case, a surface is approximated by a triangle mesh, 

and the error is the volume between the triangle patches and the 
surface. The following error has to be minimized: 
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In the 3D case, a 3D volume is approximated by a set of 

tetrahedra and the error is the mass between the tetrahedra and the 
volume. The following error has to be minimized: 
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We now consider the specific implementations of these 

concepts in 1D, 2D and 3D. 

2.1 Point selection algorithm for 1D 
The algorithm’s goal is to select sample points on a function 

f, so that the piecewise linear approximation function fsub defined 
by the selected sample points leads to the smallest possible error. 
We propose an iterative algorithm adding one point at each 
iteration. Starting with two sample points, a function f and the 
piecewise linear approximation using the two sample points, the 
original error is the area between the two functions, visualized in 
Fig. 1a. Adding a sampling point reduces the error as visualized in 
Fig. 1b. It can be proven that for the depicted example, the point 
furthest away from line AB results in the minimum error. Although 
the furthest point may not be optimal for an arbitrary function, it 
remains a good choice. We define an iterative solution to 
approximate f(x) by line segments: 

1) Create an initial point set Ssub, consisting of the 2 endpoints 
of f, and a set of line segments L, consisting of 1 line segment 
whose end points are the two points in Ssub . 

2) For each line segment Lli ∈ , select the point Spi ∈ , 
which is on the part of function f, which the line segment li tries to 
approximate, and which is the furthest point to the line segment li. 
Calculate the area αi of the triangle defined by pi and the two end 
points of li.  

3) Find the maximum αj=max{αi} and add the corresponding 
point pj to the subset Ssub and substitute the line segment li with the 
line segments pjA and pjB  where A and B are the end points of li. 
 { }jsubsub pSS U=  

 
{ }( ) ( ) ( ){ }BpApljLL jj ,, UU−=  

 
4) If the number of elements in Ssub is equal to a threshold, 

terminate the algorithm, else return to 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1a, b: Approximation error (shaded  area) before and after adding 
one point. 

Point pj corresponds to point (xC,C) in the figure above.                 

2.2 Point selection algorithm for 2D and 3D 
The 2D case is similar, except that we select the point on the 

function pi furthest away from a specific triangle. The error metric 
calculates for each triangle the volume of a tetrahedron whose base 
is the triangle and whose height is the distance between point pi 
and the triangle. The point pj corresponding to the tetrahedron with 
the maximum volume is selected and the base triangle is replaced 
by 3 sub-triangles. 
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The error metric can be expanded to the 3D case, where for 
each tetrahedron the point pi is selected which maximizes the mass 
for that tetrahedron. The mass is defined as the product of the 
volume of the tetrahedron and the interpolation error for point pi. 
Then, the maximum of the masses for all tetrahedrons is calculated 
and the corresponding point pj is selected. The tetrahedron 
enclosing the selected point is then subdivided into 4 tetrahedra. 

Scaling the interpolation error by the distance between 
neighboring sample points naturally balances the conflicting needs 
of densely sampling a function in regions of high curvature and 
distributing samples across the entire function. This contrasts with 
the dampening function approach as used, for example, by Monga.  

Applying the above mentioned algorithm results in a non-
uniform sampling of the device space ( ) pRGBzyx ∈,, , 

which takes the curvature of f x,y,z( )∈ CIELAB  into 

account. It is a data-dependent node selection process, which aims 
to select nodes minimizing the approximation error. 

2.3 Results of the point selection algorithm 
Initial test results show a significant color accuracy 

improvement for a characterization using a similar number of non-
uniform samples (optimized test chart) versus uniform samples 
(uniform test chart). Furthermore, an optimized test chart 
generated for a specific printer also outperforms a uniform test 
chart when used on a different printer unit of the same model.  

The experiments were performed using two HP Z3100 large-
format printers and a roll of HP Premium Instant-Dry Satin Photo 
paper. We printed a 13×13×13=2197 uniform RGB test chart on 
printer A, measured the CIELAB values using a 
spectrophotometer, and used our algorithm to select 3 subsets of 
125, 512 and 1000 color patches. Then we printed those 3 
optimized test charts and 3 uniform test charts (5×5×5, 8×8×8, 
10×10×10) on printer B and generated 3 ICC profiles containing a 
33×33×33 LUT.  

Fig. 2 describes the performed accuracy tests.  
 
 
 
 
 
 
 
 

 
Fig. 2: Testing of the Accuracy of the transformations.  

1) We applied the 3 ICC profiles to a test data set, printed the 
patches, measured the CIELAB values, and calculated mean ΔEab 
(1976) errors. This data set is referred to as “uniform, ICC 
profile”, indicating a uniform test chart in device color space, 
from which an ICC profile was built (first interpolation) and then 
applied to the test data set (second interpolation).   

2) We used the non-uniform chart data (125, 512 and 1000 
patches), generated a Delaunay tessellation, calculated the device 
dependent values for the test data set through tetrahedral 
interpolation, printed the patches, measured the CIELAB values, 

and calculated mean ΔEab (1976) errors. This data set is referred to 
as “non-uniform, direct”, indicating a non-uniform test chart in 
device color space, which is directly used to transform the test data 
set (only one interpolation). 

As test data set we used a 19×19×19 uniform grid in CIELAB 
and selected the CIELAB values (786) inside the printer gamut. 
We could have selected a different data set — the only important 
point is to use a test data set different from the set used to describe 
the device characteristic. 

Fig. 3a shows the mean ΔEab (1976) errors for the test data 
set and Fig. 3b shows the 95 percentile ΔEab (1976) errors for the 
test data set. The non-uniform test charts clearly lead to higher 
accuracies for 125, 512 and 1000 test samples. Furthermore, the 
data in Fig. 3 represents a real-world scenario where an optimized 
test chart was created for one printer and then used and tested for 
another printer of the same type. The average difference for 1000 
patches printed on printers A and B was 1.24 ΔEab as illustrated in 
Fig. 3. This means that our point selection algorithm is quite 
robust.  

Analyzing the results from a different viewpoint, the data 
indicates that a predetermined accuracy can be achieved with a 
smaller sample number if a non-uniform sampling scheme is used 
versus a uniform one. A smaller amount of samples is particularly 
important for the direct color transformation method, due to the 
dependence of the performance on the number of tetrahedra, which 
is dependent on the number of sample points. Fig. 4 illustrates the 
performance for the color transformation of one large document 
when different sample numbers are used. It exhibits a linear 
scaling of time with number of samples. For commercial printing 
solutions both speed and accuracy are important, but can be traded 
against each other dependent on the needs of a specific type of 
print job. High quality photo-books require a different accuracy 
than direct mail.  

There are several applications for the described point 
selection algorithm: On the one hand, a color transformation can 
be specified in a more efficient (fewer points, faster processing) 
and accurate way. On the other hand, those non-uniform test charts 
containing significantly fewer patches, can be provided to 
customers to build color transforms for their specific devices. In 
this scenario having to print a test chart with fewer samples means 
using less resources (ink, media, time), which is always critical. 
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Fig. 3a: Results (mean ΔE) for uniform and non-uniform test charts. 
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Fig. 3b: Results (95 percentile ΔE) for uniform and non-uniform test 
charts. 

 

 

 

 
Fig. 4: Processing time for direct inversion. 

3. Tessellation optimization  
Having a uniform or non-uniform set of samples in the device 

space, which are printed and measured, will result in a set of non-
uniform distributed nodes in the device-independent space (e.g. 
CIELAB). For printing purposes this set of scattered data points is 
used to transform an image’s colors from the device-independent 
into the device dependent space. There are many methods to 
perform a scattered data interpolation, as discussed in detail in [1]. 
In the case of a tetrahedral interpolation, first a complete 
tessellation is performed. However, this tessellation is not unique 
and will lead to different results. Engineers often perform a 

straightforward tessellation in the device space in the case that a 
uniform test chart has been used, and simply use the tessellation in 
the device-independent space. This practice ensures a complete 
tessellation of the device gamut even when it is concave. 

In the case of a non-uniform test chart, color scientists usually 
apply an nD Delaunay algorithm, as it provides well-shaped 
simplices [3], which are as equiangular as possible. In detail, the 
algorithm maximizes the minimum angle in a tessellation. 
Although this tessellation has many desirable features, it also has a 
couple of drawbacks: First, a Delaunay tessellation is always 
convex, an issue for printer gamuts because they are often concave 
in CIELAB. Second, several publications in applied mathematics 
[4, 5], geometric modeling, and finite elements have shown that a 
data-dependent tessellation can often significantly improve the 
quality of the approximation and that despite common belief, long 
thin triangles can be good for linear interpolation. Data-dependent 
tessellations not only take into account the location of the points 
(x,y), but also the function values of the point f(x,y) and some 
known characteristic or requirement of the function being 
approximated. Specifically, long thin triangles are well suited to 
approximate a function f(x,y) having a preferred direction (e.g. 
large second-directional derivate in one direction, compared to 
another direction) and the long sides of the triangles are in the 
direction of small curvature for f(x,y).  

Such a data-dependent triangulation can be constructed by 
starting with an initial tessellation, defining a cost criterion for 
each edge, and then iteratively evaluating the cost of an edge in a 
quadrilateral and swapping it when the cost of the alternative edge 
is lower. We tested this approach for the 2D case, where the edge 
swapping is driven by the error metric from Section 2, and the 
Delaunay tessellation is replaced with the optimized tessellation. 

Given a set of points pj(x,y) and the corresponding function 
values f(pj) we can apply the following algorithm: 

1) Perform an initial Delaunay tessellation of the points pj, 
resulting in a list of triangles. 

2) For each triangle, test whether the triangle and one of its 
neighbors form a convex quadrilateral. If that’s the case, test 
whether swapping the internal edge reduces the cost function. If 
yes, swap the edge and replace the two initial triangles with the 
two new triangles and put them at the end of the list. See Fig. 5. 

3) If no further edges can be swapped, or if a certain number 
of iterations have been achieved, stop; otherwise go back to step 2.  

Using the 2D error metric from section 2.2, the cost function 
selects the pair of triangles generated by edge swapping, that result 
in the smallest summed error. 

 

 
Fig. 5: Edge swapping in a quadrilateral. 

For illustration purposes, we selected a test function f(x,y) 
from [4] with a sharp drop running diagonally across a square 
(Fig. 6), 
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calculated the functional values for a regular grid of 11×11 and 
selected 36 points using the algorithm described in Section 2.2, 
and then performed both a Delaunay and the data-dependent 
tessellation described above. The results are visualized in Figs. 8 
and 9. For comparison Fig. 7 visualizes the results for a Delaunay 
triangulation of 36 regular points. Fig. 9 shows that the triangles 
are thin in the direction of strong curvature and long in the 
perpendicular direction. That means that our cost measure for 
edges does give the expected results. The average error for the test 
function for the test data set of 169 values is avg.ΔE= 0.0018 for 
the Delaunay tessellation and avg.ΔE=0.0007 for the data 
dependent tessellation. 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6: Function used for test purposes. 

 
 
 
 
 

 
Fig. 7: Delaunay tessellation of 36 uniform distributed points. 

 
 
 

 
 

 
Fig. 8: Delaunay tessellation of 36 selected points,  avg.ΔE= 0.0018. 

 
 

 
 
 

 
Fig. 9: Data-dependent tessellation of 36 selected points, avg. 
ΔE=0.0007. 

 

3.1 Preliminary results of tessellation optimization 
We also selected one plane of the printer data set (R=128) 

together with the corresponding L*, a* and b* values. From the 
original 13×13=169 points we selected 25 points and performed a 
Delaunay and a data-dependent tessellation. If the two tessellations 
are used and applied to the subSS − data set, the average and 
maximum approximation error achieved with the Delaunay 
tessellation is avg.ΔL*=0.0015, maxΔL*=0.0022 versus 
avg.ΔL*=0.0011, maxΔL*=0.0001 achieved with the data-
dependent tessellation. The results achieved for a* and b* are 
avg.Δa*=0.003 and avg.Δb*=0.0049 using a Delaunay 
triangulation and avg.Δa*=0.0025 and avg.Δb*=0.004 using a 
data-dependent tessellation. 

There are a couple of papers in the area of computational 
geometry which describe a data driven tessellation in 3D [6]. We 
are currently integrating our error metric into such a tesselator and 
testing whether the characterization data of a typical printer is 
suitable for data-dependent tessellation.   

The final proposed algorithm is an iterative sequential 
algorithm that alternates point selection and tessellation. The first 
step selects a new point { }subj SSp −∈  using the point 
selection algorithm form Section 2 and the tessellation from the 
previous iteration. The second step optimizes the tessellation using 
the data-dependent tessellation described in Section 3.  

4. Conclusion 
The proposed method to select a set of optimal sample points 

from a larger set enables a color transform to be specified in an 
efficient way, resulting in higher accuracy than achievable with 
the same number of uniformly placed sample points. This is 
beneficial to the processing time as well as to the resources (ink, 
media, and time) if those sample points are used for 
characterizations of a whole series of same model type printers. 
Initial tests suggest the newly developed error metric can also be 
used as a cost measure for a data-dependent tessellation of the 
selected sample points, at least for 2D data. Whether the data 
describing a complete printer characteristic is suited for a data-
dependent tessellation will be reported in the final paper.   
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