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Abstract: 
Evaluation of mottle is an area of on-going research in print 

quality assessment. We propose an unsupervised evaluation 
technique and a metric that measures mottle in a hard-copy laser 
print. The proposed algorithm uses a scanned image to quantify 
the low frequency variation or mottle in what is supposed to be a 
uniform field. ‘Banding’ and ‘Streaking’ effects are explicitly 
ignored and the proposed algorithm scales the test targets from 
“Flat print” (Good) to “Noisy print” (Bad) based on Mottle only. 
The evaluation procedure is modeled as feature computation in 
different combinations of spatial, frequency and wavelet domains. 
The algorithm’s results are tested on a dataset of about 23 K only 
test targets out of which 13 were strictly for performance testing 
and results representing 10 targets are quantified in the paper 
against subjective rankings from ~30 Print Quality Experts (PQE) 
resulting in a ~ 91% correlation. 

1. Introduction 
Measurement of print quality is essential in many applications 

such as development of print-defect detection algorithms and 
photographic printing. It is imperative for print engines in use 
today to meet stable image quality requirements as evaluated by 
various metrics. The current marketplace demands the best image 
quality at competitive costs with minimum downtime. Hence, the 
ability for print engine vendors to efficiently achieve the highest 
levels of quality will ensure them a leadership role in the printing 
industry. 

Ordinarily, these measurements are made by a Print Quality 
Expert (PQE) using various psychometric techniques. 
Unsupervised measurement of print quality is a topic widely being 
worked upon by many scientists in this field and has yielded 
impressive results. The characterization and evaluation of print 
mottle is an important step in assessment of print quality and is 
also a primary parameter of a hard copy print that we tackle in this 
paper.  

Many evaluation models have been proposed for assessment 
of print quality in the past. Initial approaches include band-pass 
analysis, texture analysis, and measurement of specific perimeter 
and coefficient of variation. Johansson [1] proposed a method 
based upon the spatial wavelength analysis and named it as Band 
Pass Analysis (BPA). A modified coefficient of variation 
highlighting the effect of mean reflectance on print mottle was 
proposed by Fahlcrantz et al. [2]. The authors claim the method 
proposed in [1] earlier overestimates the mottle in dark prints but 
underestimates the lighter ones. Based on theoretical evidence and 
empirical testing, authors in [2] propose a square-root dependency 
of perceived luminance level on physical luminance level instead 
of the original cube-root relation in the CIELAB equation. Moving 
to evaluation of systematic print mottle, Fahlcrantz [3] proposed a 

model to evaluate variations that were systematic in nature. The 
model considered the variation between wavelengths of 0.25 and 
16 mm and used a Contrast Sensitivity Function (CSF) of the HVS 
(Human Visual System) in form of a weighting vector to adjust 
variation in sensitivities at different frequencies. This model lacked 
the ability to perform a local analysis of printed area, and was also 
sensitive to half-tone screening defects due to its sensitivity to high 
frequencies.  

All the above methods are also compared by Fahlcrantz et al. 
[4].  They conceptually examine and compare different techniques 
including ISO/IEC 13660 to postulate all aspects governing visual 
print-quality assessment and also question the need of a model-
dependent ISO standard with emphasis laid upon whether ISO 
13660 is a complete standard or not. ISO 13660 being based on 
density variations divides the evaluation model into two 
measurements – Graininess and Mottle, based on crude-band pass 
partitioning where higher frequencies correspond to the former and 
lower frequencies correspond to the latter, the partition threshold is 
set at 0.4 cycles/mm (~10 cycles/inch ).  

More recently proposed color mottle evaluation metric [5, 6] 
is based on prior work done in the grayscale domain. However, the 
evaluation of color mottle is done by assuming conditional 
independence of channel information. In this paper, we evaluate 
mottle in test targets printed using K component only in CMYK 
printers.   

Techniques based on multi-scale and multi-resolution analysis 
have long been in existence in reference to print quality. Eid et al. 
[7] utilized a combination of the Discrete Wavelet Transform 
(DWT) and the ISO/IEC 13660. The results of this technique prove 
to be a lot better than those of ISO/IEC 13660. Another approach 
proposed by Donohue et al. [8] examines the wavelet analysis, 
exploiting its localized spatio-frequency properties for 
characterizing defects of limited spatial support. 

In this paper, we propose a novel algorithm for automatic 
evaluation of mottle in what is ideally supposed to be a uniform 
print. We make use of a multi-resolution approach to generate a 
de-noised perceptual approximation from the input image and then 
process this image in the spatial and frequency domain separately, 
resulting in several features characterizing mottle. An effective 
outlier removal module facilitates the algorithm to provide with a 
more meaningful mottle number by removing the features which 
do not characterize the non-uniformity of test targets. A final 
metric value for total amount of mottle is obtained using the valid 
features and is known as the Spatio-Frequency Mottle Metric 
(SFMM).  

The paper is organized as follows. Section 2 gives a 
description of various modules of the proposed algorithm. This is 
followed by a ranking module in Section 3 whereas Section 4 
describes the Visual Evaluation Procedure (VEP) against which the 
algorithm’s results are correlated. Results are shown in Section 5 
and conclusions are drawn in Section 6. 
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2. Proposed Algorithm 
An outline of the proposed algorithm primarily consisting of 3 

modules is shown in Fig. 1. The first module (M1) is known as the 
pre-processing module and is responsible for preparing the input 
image for feature calculation. This module mainly performs the 
wavelet de-noising procedure on a cropped version of input image 
from the scanner. The second module, spatio-frequency parameter 
estimation (M2) handles feature computation in both, spatial and 
frequency domains and provides the third module (M3) with an a 
priori dataset to sort and remove outlier features. The third module 
consists of an Insignificant Feature Removal Stage (Outlier 
Removal) which is responsible for removing the Insignificant 
features from the feature set and give the value of the SFMM. 
Algorithm’s performance evaluation is done by comparing ranks of 
SFMM against each target’s visual scaling results, and a measure of 
performance is calculated in terms of correlation between the 
measured value and the visual scaling. 
 

 

 

 

 

 

 

 

 
Figure 1: Block diagram of the proposed SFMM Evaluation algorithm 

2.1 Pre-processing Module 
Each test page consists of two targets - (1) K only and (2) 

Process Neutral, scanned at 200 dpi. The scanner used is HP 
Scanjet G4010 which has a six color lamp system. Each test target 
is acquired twice, once with all 6 lamps active and subsequently 
with two green lamps active. Note that, green lamp is the most 
sensitive to non-uniformities in luminance values, hence using it 
exclusively for K-only targets. This advantage of the scanner 
eliminates the need for calibration for luminance variations. 

The input image acquired from the scanner has dimensions about 
830x830 and is converted to grayscale Eqn. (1): 

                                                                                             (1) 

where Igray is the final grayscale image and [R, G, B] are three 
channels of the TIFF file input from scanner. Note that the 
coefficient of green channel is greater than the coefficients of other 
two. The red and blue channels are included in the input image as 
they may contain variation information which could be lost on 
selecting only the green channel. The resultant grayscale image is 
cropped with respect to center of the original image as shown in 
Fig. 2 such that the features can be computed efficiently. Next, the 
image obtained here goes through the wavelet de-noising stage 
which comprises the most significant portion of this module. 

Wavelets have long been used in image compression and 
signal de-noising. Wavelet basis functions are spatially localized 
and give information of both scale and frequency. Here, we use a 
similar technique described by Mangin [8] where the image is 
down-sampled using DWT analysis to 4 levels and all details 
(horizontal, vertical and diagonal) are completely removed. This 

leaves only the approximation at level 4 or what we strictly call, 
low frequency information. This approximation is then sent through 
a process of Wavelet synthesis using the same filter banks 
employed in the aforementioned analysis procedure. This yields 
final reduced-noise image or what is also known as the ‘Perceptual 
Approximation’. The filter banks used for Wavelet 
analysis/synthesis are the same as used in JPEG2000 compression 
standard. 

The down-sampling process is done until 4 levels, because the 
peak of chosen CSF (explained in Section 2.3.1) occurs at a spatial 
frequency of 6.25 cycles/inch, this corresponds to a wavelength, λ = 
0.16 inches or a scale of 32 pixels. Thus, as described above, all 
high frequency horizontal, vertical and diagonal details denoted as 
H, V and D respectively, are removed and a de-noised image of 
resolution 512x512 pixels is synthesized using the same filters (See 
Fig. 2). 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 2: Detailed block diagram pre-processing module (M1) 

2.2 Spatio-Frequency Parameter Estimation  
The parameter estimation module comprises of 2 major sub-

modules. One evaluates parameters (alternatively referred as 
features) strictly in the frequency domain, and the other computes 
features in the spatial domain. In Section 2.3.1, we explain the 
Contrast Sensitivity Function (CSF) followed by functions of the 
two sub-modules (2.3.2-2.3.3). 

2.2.1 Contrast Sensitivity Function 
Five CSF models as described in [10] were implemented for 

experimental purposes. The radial frequency axes for the CSF are 
implicitly generated by making use of the sampling theorem (See 
Figure 3). 

 

Figure 3: Different 1-D CSF curves implemented originally in 2D for filtering. 
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The size of the image and the scanning resolution (sampling 
frequency) are set at 512x512 pixels and 200 dpi respectively. Our 
purpose in using the CSF is to simulate the behavior of the HVS to 
compute one of the features in frequency domain. 

2.2.2 Frequency Domain Analysis  
As mentioned previously, the initial objective is to compute 

features that give a measure of variation across the test target.  
A 2-D Fast Fourier Transform (FFT) of the 512 x 512 test 

image generated at the end of the pre-processing stage, is 
computed, and subsequently power spectrum (Squared Magnitude) 
is calculated. We subtract the mean of the image before taking the 
FFT for the purpose of normalization. The effects due to banding 
and streaking are also eliminated by setting the first row and 
column of the power spectrum to zero. 

 
 
 
 
 
 
 
 
 
 
 

(a)                                                      (b) 
   
 

 
 
 
 
 
 
 

 
(c)                                                 (d)  

Figure 4: (a) 2-D FFT (centered) of ‘perceptual approximation’; (b) cropped 
version of (a) to re-iterate the absence of any high frequency content; (c) 
BRBM (5 pixels width) in image dimensions; (d) BRBM corresponding to low 
frequency content. 

These values can now be used to compute the following two 
features: 1) Ring Mottle (Mrings); 2) Spectral Entropy (Espec). To 
compute Mrings, we make use of a technique known as ‘radial 
filtering’. It can clearly be seen from Fig. 4 (a) – (b) that the power 
spectrum contains only low frequency content. To perform ‘radial 
filtering’, we define radial frequency bands as Binary Radial Band 
Maps (BRBMs) which are each multiplied with the power spectrum 
and subsequently pixel values are added providing energy in each 
band. BRBMs start from center with radial width of 5 pixels 
corresponding to the lowest radial frequency band. A pseudo-color 
representation of these BRBMs together is shown in Fig. 4 (c) – 
(d). 

BRBMs are multiplied with the image, to demonstrate the 
phenomenon of frequency domain filtering, subsequently giving 
energy (measure of variation) in each band. Discrete power 
spectrum P(u, v) of an N x N image where u and v represent 
frequencies along X-direction and Y-direction respectively (see 

Fig.4), P(u, v) is multiplied point-by-point with the CSF described 
in section 2.2.1 resulting in a filtered signal that depicts the HVS 
response. The expression for uniformity in each band is given 
below: 

                                                                                            
(2) 

 

where, C(u, v) is the 2-D Campbell’s CSF (Fig. 3), Hi(u, v) is 
BRBM  of ith frequency band (Fig. 4) and Ui gives the energy in the 
ith frequency band. Consequently, the Ring Mottle (

ringsM  ) is 

computed utilizing the aforementioned uniformity (Ui) in each band 
(Eqn. 2): 
 

                                       (3) 
 

where, f0 =                  cycles/inch and FFT Size, N = 512. 

The next feature computed is Spectral Entropy (Espec), using 
the probability distribution of the power spectrum P(u, v). The 
following expression is used for computing Espec: 

 
                                                                                               (4) 
 

where,                                              is the probability distribution of 
P (u, v). When texture of the discrete power spectrum is more 
random, all probability values are significantly high, yielding large 
entropy values and vice-versa. This implies, a highly irregular 
pattern needs more information to be described, hence high 
entropy. Note that, spectral entropy is not calculated using the ring-
shaped masks, but over the whole power spectrum (Fig. 4(a)). 

2.3.3 Spatial Domain Analysis  
The motive behind exploring the spatial domain is the 

flexibility provided by various statistical methodologies such as 
first and second order textural features using the co-occurrence 
(CO) matrices of size L x L (depending on the dynamic range of the 
image). CO matrices are calculated in 4 directions (0o, 180o, 90o 
and -90o) represented in Fig. 5 below and then cumulated together 
to give one CO matrix. 

 
 
 
 
 
                     (a)                                                (b) 

Figure 5: Directional setting for Co-occurrence matrix (a) 0o and 180o; (b) 90o 
and -90o. 

After the final CO matrix (Q(m, n)) is obtained, a set of pre-
selected features [11] is calculated: Angular Second Moment 
(ASM), Inverse Difference Moment (IDM), and Spatial Entropy 
(ENTR). The following three equations summarize the above 
mentioned features. 

                       
        (5)                        

 
 

                                                                                                       (6) 
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ASM corresponds to amount of orderliness in the target. If the 

texture is extremely random or the variation is high, the value of 
ASM is low and vice versa. Same is the case for IDM. Hence, these 
values are sorted in descending order to be in accordance with the 
ranking algorithm which works on the principle of lowest to highest 
(Best to Worst). IDM has smaller numbers for images with high 
contrast, larger numbers for images with low contrast.  

The next spatial feature included is based on the one described 
by Rosenberger in [12], known as the Stochastic Spatial Frequency 
Distribution Analysis (SFDA). The advantage of adding this feature 
is that it is based on local variation information of the test target. 
Also, originally this feature is intended to compute the amount of 
graininess in the target, but we modified it to provide us with a 
measure of mottle in the target. A formula different from [12] is 
used in our metric.  

In any digital image which consists of low frequency gray 
level variation, the SFDA algorithm proposed by Rosenberger in 
[12] measures the two dimensional rate of change in luminance 
values and transitions between light and dark throughout the image. 
Many parameters affect our visual system as described in [12]. To 
corroborate this fact, the author states - “The human visual system 
operates in a three dimensional environment (Subjective Analysis 
setup) composed of the luminance intensities governed by 
parameters like length and height of the viewing area relative to the 
observer’s visual system”. SFDA extracts square contiguous target 
areas of the same pixel dimensions in an iterative fashion, as shown 
in Fig. 6 below: 

 

 
 

 
     (a) 

 

 
 
 
 
 
 
      (b) 

 
 
 
 
 
 
               (c) 
 
 
 
 
Figure 6: Spatial Distribution: (a) A typical target size (512x512) composed of 
16 128x128 targets.(b)  Spatial distribution of sub-target no. 1 shown in (a), 
4x4 grid shown on  large 128x128 target; (c) expanded view of first 4 sub-
targets in (b). 

A rather different metric than SFDA is used here, but is not 
named differently. The main test target is divided into 16 tiles of 
size 128x128 pixels (Fig. 6(a)-(b)). These bigger tiles are labeled 
with index i = [1, 2,…..,16]. Each ith tile is further sub-divided into 
16 tiles each of size 32 x 32 pixels (Fig. 6(c)). These smaller tiles 
are labeled as [A, B, ..….. , O, P]. Now, the mean and standard 
deviations for all 32x32 targets are calculated. This yields 2 
vectors, one is the standard deviation vector αi = [σA, σB, σC, σD, σE , 
……, σP] and other is the mean vector βi = [µA, µB, µC, µD, µE, ……., 
µP], i =[1,2,3…,16] representing each 128x128 tile.  

  We compute 3 attributes using the above two vectors to 
facilitate the final computation of mottle. These are known as µi 

(Mean of αi), σi (standard deviation of αi) and µβi (Mean of βi). The 
target mean, µβi is a good indicator of diversity of visual intensities 
or local area contrasts. Next we compute, what is called the Local 
Mottle for each 128x128 sub-target. The expression for it is given 
as:                                                                                              

                  (8) 

where, M (i), Local represents the mottle for each 128x128 tile. This 
process, when carried out for all 16 tiles, gives us a vector which 
consists of local mottle values. This expression is different from the 
one proposed by [12] in the sense that original SFDA uses standard 
deviation of βi rather than the mean. The reason behind this change 
is that the mean and standard deviation of αi collectively provide us 
with the degree of variation amongst αi consequently giving a 
measure of uniformity in the small 128x128 sub-targets and the 
mean µβi acts as a local scaling factor for that particular sub-target. 
These 3 factors, when multiplied together provide a good local 
variation estimate. Final SFDA mottle value is expressed as a 
product of standard deviation of M (i), Local and its mean. 

                                                                                               (9) 

The proposed change in the existing SFDA algorithm resulted in 
a better co-relation with the subjective rankings.  
The parameters given by Eqns. (3) – (7) and (9) give the 6 features 
that comprise the final value of SFMM.  

3. Ranking Algorithm 
After obtaining all features (attributes) from Module 2 for all 

10 test targets, the data is organized in form of vectors. These 
vectors are further normalized with respect to the local maximum 
value. This is done to limit the maximum SFMM value to number 
of features. Next, the normalized parameters are obtained in form 
of a matrix of size M x N where M equals number of test targets 
(10) and N is the number of features (6) known as the Feature 
Value Matrix (FVM). A tabulated version of FVM for 10 targets in 
consideration is shown in Table 1. 

The a priori ranking is obtained by arranging most of the features 
in ascending order, though this is not the case with ASM and IDM, 
which are ranked in descending order to maintain the consistency 
with other 4 features (Table 1). In any feature vector, rank 1 
corresponds to the “Best sample” and 10 correspond to the “Worst 
Sample”. Rankings can be compared along columns, each target 
contains a majority rank which has the highest frequency of 
occurrence and is known as the Cumulative Rank (CR).  

3.1 Insignificant Feature Removal Stage  
This part of the algorithm removes the insignificant features 

using a maximum correlation based criterion between each feature 
rank and CR. In the ranking process, n test targets are ranked in r 

1
A B C D

A

C

B

D

σA = 0.2227 

µA = 8.1936 

σB = 0.1164

µB = 8.4420

σC = 0.2039
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µD = 7.6443

…

O P…
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Test 
Target

Ring 
Mottl

Spec. 
Entropy

ASM 
(Desc)

IDM 
(Desc)

Entropy SFDA CR

1 1 5 3 1 4 1 1

2 2 10 1 4 1 5 1

3 5 1 4 5 3 3 3

4 7 7 7 3 7 7 7

5 3 8 2 7 2 2 2

6 6 3 6 6 6 6 6

7 9 4 9 9 9 9 9

8 4 9 5 2 5 4 5

9 8 2 8 8 8 8 8

10 10 6 10 10 10 10 10

CORR 0.97 -0.31 0.98 0.66 0.96 0.92 1

Insignificant Features and Correlation Information

∑
=

=
N

k
kiki RfS

1

different rankings according to 6 features. The mode rank i.e. the 
number with most occurrences for a test target is assigned as its 
CR. 

For example, if 4 features rank a target as ‘1’ and rest two 
features rank it 5 and 6, then these two features would be 
considered as outliers. To find and eliminate these outliers, we 
developed a vote-based outlier removal algorithm. Duplicate 
rankings do not make a difference in the final results. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1: Feature Rank Matrix for 10 test targets with 
Cumulative Ranks and Outlier information (‘1’ = Least Mottle; 
…… ‘10’ = Most Mottle). 

The last row in Table 1 gives the correlation between CR and 
corresponding feature ranks. The criterion for removing outliers is a 
correlation threshold. If the correlation between CR (also known as 
a priori ranks) and rank of corresponding feature is less than 80%, it 
is declared as an outlier. This value is fixed at 80%, fulfilling the 
level of accuracy we require. The columns for outlying features are 
set to 0 in the FVM (See Table 1).  

4. Visual Evaluation Procedure (VEP) 
There have been many weighted sum based algorithms 

proposed to find a many-to-one mappings of psychometric ranking 
from several human visual observers. A similar technique is used 
here to find the cumulative ranking which is described in [13]. 

Given 10 test targets, these are ranked in r different rankings 
according to m observers. First, a sum of rank values is computed 
using the following expression: 

             
                   (10) 

 
where i represents the ith image and varies from 1 to 10. The 

index k gives the rank and also varies from 1 to 10. The term fik 
represents the number of observers that give ith image a rank k.  
The term Rk is a vector in the reverse order to k and is given by Rk = 
n – k + 1. Finally, these values of Si are arranged in descending 
order and the indices corresponding to this order are given as ranks 
to the images corresponding to i. A way of combining all subjective 
rankings for comparison with the algorithm using correlation 
statistics has been presented here. The method explained above is 
applied only to data obtained from visual scaling experiments done 
at Rochester Institute of Technology by laymen observers. The 
final algorithm rankings have been compared against the ones 
obtained at the HP facility in Boise, ID by about 30 Print Quality 
Experts (Fig. 7).The next section summarizes the results in detail 
along with the final rankings for each sample followed by the 
conclusions. 

5. Results 
The SFMM results were compared against those obtained 

from the VEP to analyze its overall performance. We compared the 
SFMM against the visual rankings obtained previously, on the basis 
of correlation. The graphical representation is shown in Fig. 13 
followed by a tabulated summary of SFMM, Visual Evaluation 
Procedure and their correlation in Table 5. 

 

Figure 7: Correlation curves between (a) SFMM Metric and VEP metric, (b) 
SFMM ranks and VEP ranks (with Correlation details). 

In Fig. 7(a), the two SFMM is mapped on a scale of 10 by a 
simple linear transformation and is plotted against the VEP scale 
value (Table 2). In Fig. 7(b), a separated distribution of ranks from 
SFMM and VEP is shown along with the correlation. One of the 
ambiguities where one of the samples - “P1-Hammer Mill Fore” 
was given a rank 4 on the uniformity scale by the observers and 
SFMM ranked it to be the best sample, lowers the correlation 
considerably from 91% to 85%.  

Test 
Target

Printer Media SFMM Rank VEP      
(HP)

Visual    
Rank

1 P1 Canon Color Laser 0.989 3 9.5 1
2 P1 Hammermill Fore 0.5979 1 6.36 4
3 P1 Hammermill Laser 1.0907 4 7.75 2
4 P1 Xerox Bus. 4200 2.0018 7 2.56 8
5 P2 Canon Color Laser 0.8259 2 6.91 3
6 P2 Hammermill Laser 1.6118 6 3.82 7
7 P2 Xerox Bus. 4200 2.3665 9 1.29 9
8 P3 Canon Color Laser 1.2449 5 6.26 5
9 P3 Hammermill Laser 2.0912 8 4.02 6

10 P3 Xerox Bus. 4200 4 10 0.5 10  
Table 2: Result Summary with SFMM value and relative rank 
alongside the visual rankings 

(a) 

(b) 
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The reason for this ambiguity will be clear once the second 
pass of the visual scaling is carried again and when we further add 
features to the algorithm. This would be explained in the next 
version of the metric as a part of future work.  We tested another 13 
test targets with varying amount of mottle, different optical density, 
printed using 4 different printers and 4 different media. The 
algorithm gave excellent results with correlations up to 90%. That 
data is out of the scope of this paper and hence not provided here. 

In Table 2, a sorted list of data is given according to the 
scanning sequence of targets. In total 3 printers were used in the 
generating the test targets – (1) “P1”; (2) “P2” and (3) “P3”. 
Further, four different media were used to print 10 test targets. 
These media were – (1) Canon Color Laser; (2) Hammermill Fore; 
(3) Hammermill Laser; (4) Xerox Business Multipurpose 4200.  

The printer type and media type are mentioned for each test 
target in the table. Note that the maximum SFMM (~4) value does 
not exceed the number of features. This was done to maintain 
consistency and signify the number of features finally included in 
evaluation of SFMM.  

6. Conclusions and Future Work 
In this paper, we propose a methodology of evaluating only 

low frequency content using a novel combination of Spatial, 
Frequency and Wavelet domain and also device a metric that 
provides a fairly accurate estimate of mottle in a given test target. 
The proposed metric - SFMM undoubtedly agrees well (correlation 
~ 91%) with the visual scaling results for these nine out of ten test 
targets. 

Few other observations were also made, such as permanent 
elimination of a few features and future trials with some other 
additional features based on spatial domain evaluation. The 
Coefficient of Variation (COV) for all test targets highly un-
correlated with other features’ rankings and hence can be removed 
permanently from the metric. Also, the Spectral Entropy (Espec) 
resulted in a negative correlation leading us to consider its inclusion 
in the metric even for a priori calculation in the next version of the 
algorithm. These features effect the computation of CR as they are 
considered while the maximum vote is determined.  

The next step is to develop a method for evaluating the test 
targets subjectively here at RIT which will be a pair-wise 
comparison given a constant set of luminance conditions and large 
number of casual observers. Expert evaluations would also be 
obtained and compared alongside the layman rankings against the 
algorithm results.  

Concerning the advantages of this new model over previous 
models available, the most important contribution is the 
introduction of a combinative analysis using spatial and frequency 
features with prior pre-processing using wavelets. To our 
knowledge, no attempt has been made to combine these features 
together and make a single model for evaluation of print mottle. All 
our results do in fact indicate that this rather straightforward 
method works surprisingly well in many circumstances. 

The second important advantage is of the scanner being used. 
The scanned image, being acquired using the six color lamp system 
and a customized routine adds to the algorithms robustness and 
eliminates any questions related to calibration and acquisition 
errors. 

This work is proposed to be extended another level of 
complexity. Evaluation of print mottle in real life images is an area 
which still remains unexplored. Any such algorithm has, to our 

knowledge, not yet been published or developed. Currently, the 
proposed algorithm is compatible with only flat uniform images. 
Real life images consisting of regions with varying levels of optical 
density and uniformity need to be handled and evaluated 
differently. This is something that the authors intend to propose in 
their next work based on the current work. 
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