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Abstract
We present a method to give color advice for Home Décor

using images of room finishes, such as paint, flooring, or textiles,
taken with uncalibrated cameras. Due to variations in color ren-
dering across devices, an object imaged with different cameras
will have different color values. Color information can still be ac-
curately retrieved from uncalibrated images taken under uncon-
trolled lighting conditions with an unknown device and no access
to raw data, when a limited number of known reference colors are
available in the scene.

We demonstrate that the color of any object can be corrected
using a number of calibration targets. A colored object is imaged
with an appropriate calibration target in the scene. This target is
extracted and its color values are used to compute a color cor-
rection transform that is applied to the entire image. Our system
finds the closest match of the imaged object to a database of color
coordinated paints. We can then supply the users with the appro-
priate color coordinates. Our results were validated by a Home
Décor expert.

Introduction
Digital cameras have never been so common, compact, and

affordable. With their integration into cell phones, most of us
walk around with a camera at hand at all times. Images can be
useful while shopping and it would be very convenient to simply
send an image - over the internet or via MMS - and get expert
advice in return for anything from makeup shade [7] to Home
Décor.

Despite the ease of taking pictures, objective color assess-
ment remains an issue, especially with the low quality of devices
generally integrated into cell phones. The same scene imaged
with different devices can result in quite different pixel values due
to imperfect illuminant compensation and variable camera char-
acteristics. It is impossible to accurately assign a color from a
digital image, unless the camera has been previously calibrated.

Color properties of objects are fully characterized by their
reflectance spectra, i.e. the percentage of light reflected by the
object’s surface at each wavelength and incident angle. However,
in many applications it is sufficient to only retrieve tristimulus
values, which can be achieved using an RGB camera or scanner
[4, 13].

Our method only requires a calibrated target to be present in
the scene, which is an inexpensive alternative to the use of cali-
brated devices. The object of interest is imaged together with a
reference target, which allows color correcting images indepen-
dently of the imaging device and illuminant. The extracted cal-
ibration target values allow computing a color correction matrix
that is scene and camera dependent. This transform is applied to
the entire image. The system relies on the assumption that any
camera output color image encoding is sRGB [1]. Figure 1 shows
an image of a sample and calibration target, before and after color

Figure 1. An object is imaged with a calibration target used for the color

correction of the object color. The left and right images are the uncorrected

and corrected images, respectively

correction.
Previous work [8] demonstrated the feasibility of this

method for retrieving skin color information from a single digital
picture taken with an unknown, casually posed consumer camera
and under unknown lighting conditions, using solely a calibrated
reference target representative of skin tones present in the scene.
In the current paper, we investigate the possibility of adapting the
method to wider ranges of hues in order to assess the color of
virtually any object. We demonstrate the feasibility for Home
Décor applications. The system is fed with an image of an in-
terior color to be coordinated, such as textiles or wall coverings.
We do not automatically create color harmonies, which is a diffi-
cult subjective task. Rather we use an existing database of color
coordinated palettes, designed by an interior designer, in which
we find the best color palette complementing the object’s color.
The color corrected object pixels are extracted, their values con-
verted to CIECAM02 and compared against a database of paint
samples to return the closest match. The system then returns a set
of paints that complement the closest match and object colors. A
Home Décor expert, a professional interior designer, graded the
results as very good.

State of the art
The irradiance falling on a sensor is proportional to the prod-

uct of E(x,λ ), the spectral power distribution of the illuminant,
with S(x,λ ), the reflectance spectra of the object. The camera re-
sponse ρi(x) of the ith sensor Ri(λ ) at spatial position x = (x,y)
can be modeled as

ρi(x) = s(x,λ )T ·diag(e(x,λ )) · ri(λ ), i = 1 : n , (1)

where the vectors s(x,λ ), ri(λ ), and e(x,λ ) are, respectively,
S(x,λ ), Ri(λ ), and E(x,λ ) represented by 31 samples taken over
the visible spectral range [11]. diag(e(x,λ )) is a 31× 31 matrix
with the vector entries ei(x,λ ) on its diagonal and n is the number
of channels of the imaging device.

It is not a trivial task to retrieve reflectance values from cam-
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Figure 2. Examples of before/after color correction of 2 objects. All the samples were imaged in the same conditions, but automated in-camera processing

shows important variations. Under each pair of images, we show the convex hulls of the image uncorrected target values (cyan), reference target values (green),

and image corrected target values (magenta). The reference values are calculated from the reflectance spectra of the target, converted to sRGB. The corrected

values and reference values overlap.

era responses, especially when n � 31. For many applications,
however, it is sufficient to retrieve colorimetric values instead of
the entire reflectance spectra. The human visual system is indeed
unable to recover spectral information and two objects having the
same appearance under a given illuminant can have slightly dif-
ferent reflectance spectra S(λ ). A three channel camera is then
sufficient to retrieve tristimulus values. Several approaches using
RGB cameras as colorimeters have been proposed. Wu et al. [13]
use a calibrated camera to compute transforms from camera RGB
to CIEXYZ by either minimizing a cost function in CIELAB
space or by minimizing the mean square error in CIEXYZ color
space under several selected illuminant conditions. The applica-
tion was the colorimetry of human teeth. Hubel et al. [6] present
a method to compute 3×3 color transform matrices intended for
camera calibration in digital photography by simple least squares
regression, white point preserving least squares regression, and
weighted white point preserving least squares regression. This
type of approach allows using a calibrated camera as a colorime-
ter under known illuminant conditions.

Such calibration methods require the access to the raw data
of the sensors and the resulting color transform is camera depen-
dent. The transform is usually applied prior to the image ren-
dering implemented in the camera. In our method, we apply the
transform after color rendering. As such, we need no informa-
tion about sensor characteristics and in-camera processing, but we
need to calculate a transform for every single image. Our trans-
forms are scene and camera dependent.

Our approach
We propose a method to retrieve color information from dig-

ital images taken with a single, casually posed consumer cam-
era under unknown illuminants. The method is targeted towards
consumer applications, such as Home Décor advice. The users
are assumed to use an unknown camera in fully automatic mode
and under uncontrolled lighting conditions. We suppose that the

camera performs white-balancing and encodes images in sRGB,
which has a defined illuminant of D65.

Due to imperfect illuminant compensation, different sensor
responses, and variations in image processing and quality across
devices, uniform color rendering is never achieved. The resulting
image color values of a given scene captured with different un-
calibrated cameras or under different lights can have significant
variations.

To classify colors consistently, we need the same object to
have similar sRGB pixel values independently of the illuminant
and the camera. We have no access to the raw data of the sen-
sors and no additional information on the automatic in-camera
processing. We thus compute a color transform using known ref-
erence values present in the scene in the form of a calibration
target. Note that the reference colors need to be “close” to the
actual color to be corrected, as it is not possible to correctly map
all colors with a simple linear transform. Only a limited range of
colors can be accurately corrected with a given transform.

Previous work was targeted towards skin color assessment
[5]. Using a color target consisting of patches covering the range
of possible skin tones, we demonstrated that we could assess skin
color with an accuracy under ΔE∗

ab = 1 [8]. The gamut of skin
tones being limited, we could color correct any image using a
single target. Skin tones span a hue angle of about 20◦ in CIELAB
(see Figure 3). Considering that we could color correct skin tones
with only one target, we can roughly estimate that 360◦/20◦ =
18 targets would be necessary to correct all hues with a similar
accuracy. However, it is not practical for users to choose among
so many targets. We thus decided to use nine targets covering all
hues, at some cost in accuracy. We assume that high accuracy in
color correction is more critical for skin tones than for the present
application.

The system returns a set of paint colors coordinated with the
color of the imaged object. The paint database consists of palettes
of four colors (see Figure 4). We do not need exact color match-
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Figure 3. Skin tones only represent a limited color range and span a hue

angle of about 20◦ in CIELAB. The surfaces represent the color values of the

target used for skin color correction covering the range of human skin tones

in sRGB and CIELAB.

ing. Rather, we are interested in selecting the closest matching
shade in a color palette. The palette is the basis of our color coor-
dination recommendation. Our metric of success is if the expert
would have selected the same matching paint and palette of coor-
dinating colors from the available set. That is, the advice can give
solid guidelines to users in practical conditions such as what col-
ors to add to a room while keeping an existing design element.
The system has to work with a relatively low number of cali-
bration targets and under many real conditions, such as limited
palettes and non-uniformity of the samples.

Reference targets
The system uses a total of nine color correction targets. Eight

targets consist of a selection of Munsell Colors covering a hue an-
gle of roughly 60◦. A target contains 24 patches. 21 come from
7 secondary hues distributed to cover a good range of chroma
and lightness and three are paints extracted from our database.
The range of colors of two adjacent targets overlap. Targets were
ordered by similar hues to facilitate their use. Hue is the most
natural attribute of color, it makes the choice of the target by vi-
sual matching much simpler for the users. Also, overlapping hues
avoid having an object whose color may be in-between charts.
We added a ninth chart made of 24 paint samples from the paint
database covering a variety of beiges and browns, colors that are
common in Home Décor and require a finer sampling. Figures 1,
2, and 4 show some target examples.

We printed the targets on matte paper, such that they are
lambertian, and measured the reflectance spectrum of each patch.
These measures allow computing first CIEXYZ values under il-
luminant D65 and then sRGB values. With reference to equation
(1), s(λ ) are the target reflectances, e(λ ) is the standard CIE il-
luminant D65, and ri(λ ) are the 1931 CIE x,y,z color matching
functions. The CIEXYZ to sRGB transform is specified in [1].

Color Transform
Users choose a chart according to the general color of the

object and then image the object and chart together. The target
patches are extracted, the color pixel values of each patch are av-
eraged, and their mean values are compared to reference target
values (sRGB triplets). A 3× 4 color transform A maps the tar-
get patches mean color values M extracted from the image onto
reference target values T.

T{3×n} = A{3×4} ·M{4×n} , (2)

where T is a matrix whose ith column contains the ith value of
the n reference patches ti = (tred

i , tgreen
i , tblue

i )T and M is a matrix
whose ith column contains the ith value of the n mean camera
patch color mi = (mred

i ,mgreen
i ,mblue

i ,1)T .
We want to find A minimizing ‖T−AM‖2, i.e. minimiz-

ing the least mean square error in sRGB color space. A is com-
puted using the Moore-Penrose pseudo-inverse denoted +. Right-
multiplying equation (2) by M+ = MT (MMT )−1 gives TM+ =
AMM+ = A. Finally we obtain

A = TM+ . (3)

The pseudo-inverse of M is computed by singular value decom-
position. A provides a 3×3 color transform plus a per-component
offset. Image extracted sRGB values are not rounded prior to the
least mean square computation to increase the precision for dark
objects, i.e. small sRGB values. A is recomputed for each new
image and new target and will thus differ depending on the cam-
era characteristics, lighting conditions, and the range of colors
considered. It is applied to the entire image prior to the object’s
pixels extraction.

The spacing between the reference target colors is perceptu-
ally uniform. To approximately preserve this perceptual unifor-
mity in the color correction, the linear transform A is computed
in non-linear sRGB. Minimizing the least mean square error in
sRGB is computationally fast and simple [5], but only ensures an
accurate correction for colors that fall within the range of the cali-
bration target colors. The target thus has to be carefully chosen for
each new object and the overall color appearance of the corrected
image outside that object may be poor.

Matching metric
After color correction, the object’s pixels are assumed to be

in sRGB. The object pixel values are converted from sRGB to
CIEXYZ and then to CIECAM02. The object and paint samples
are matched by minimizing their color difference in CIECAM02.
Input data for CIECAM02 includes the tristimulus values XY Z of
the object and of the white point XwYwZw, the adapting luminance
LA, and the relative luminance of the surround. Viewing condi-
tion parameters were chosen as advised for the previous model
CIECAM97s when considering sRGB [9].

The Euclidian distance between the object’s and paint’s
CIECAM02 values

ΔE02 =
√

(Jo − Jp)2 +100(ao −ap)2 +100(bo −bp)2 , (4)

where ‘o’ stands for ‘object’ and ‘p’ for ‘paint’, is minimized.
J represents the CIECAM02 lightness and a and b are the red -
green and yellow - blue components, respectively. These com-
ponents were chosen by simplicity over the hue h and chroma C.
a and b are multiplied by a factor 100 to adjust to the range of
lightness J. Preliminary experiments returned better results when
using a perceptually uniform color space over a simple Euclid-
ian distance in sRGB. Moreover, CIECAM02 was chosen over
CIELAB for its better overall perceptual uniformity. CIELAB in-
deed shows non uniformity in blue hues [10].

The algorithm
The algorithm consists of the following steps:

1. Users choose a target whose hue is similar to the hue of the
object. They image the object and target together.

2. The target patches are extracted. The color correction trans-
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Figure 4. Paint samples are grouped in palettes of four colors. The system

matches the object color to one of the paints and returns the correspond-

ing palette. The figure shows, from left to right, the uncorrected image, the

corrected image, and the corresponding paint palette.

form (Equation 3) mapping the image target values onto ref-
erence values is computed and applied to the entire image.

3. The object’s pixel values are extracted, averaged, and con-
verted to CIECAM02.

4. The object color is compared against a collection of 63 co-
ordinated paint palettes, each consisting of four colors, i.e. a
total of 252 paints. The system chooses the paint best match-
ing the color of the object in CIECAM02 (Equation 4).

5. The system finds the palette containing the best match and
the three paints complementing its color, hence comple-
menting the object (see Figure 4).

Experiment
Colored objects were imaged with an HP R-967 camera un-

der uniform fluorescent light along with a properly chosen color
calibration target. Fluorescent lighting conditions are common in
office environments and stores, as well as in homes with the in-
creasing use of energy-saving light bulbs.

The object database consists of 63 samples of various col-
ors and materials. The samples were chosen such that their col-
ors cover most hues. The choice of beige, brown, and wood-like
samples is larger (26 samples) as these colors are very common
in Home Décor. The samples are of wood (7 samples), linoleum
(8 samples), including some mimicking wood, tiles (10 samples),
including two semi-transparent glass tiles, kitchen top samples (6
samples), and fabrics (32 samples). We intentionally chose differ-
ent, textured, non uniformly colored, and non lambertian samples
to test the system in “real” conditions. However, the database
only contains flat and relatively smooth samples, our method may
thus have to be adapted depending on the geometry of the consid-
ered decoration object. The database and the targets were created
independently, i.e we did not use the targets as references while
collecting samples.

The object CIECAM02 values are compared against the
CIECAM02 values of 252 paint samples by minimizing the Eu-
clidian distance (4). The system picks the paint closest to the
object. Paint samples are grouped in palettes of four colors. The
system thus returns four colors, one matching and three comple-
menting the object color.

Home Décor expert rating of the results
A Home Décor expert was shown each sample along with

9 color palettes, i.e. a total of 36 paints. The expert was first
asked to choose the paint out of 36 that she would pick as best

Figure 5. This figure shows the occurrence of each rating, for the system

(left) and expert (right) choices. The colors in the right plot correspond to the

grades of the system’s choices.

match. The database of paints did not offer enough colors for her
to systematically pick an optimal color. The expert was thus asked
to rate her own choices. The grades go from 1 to 5 according to
the following rating:

1. The sophistication of a high quality expert recommendation,
perfect given the palette selections

2. Competent work by an expert given the palette selections
3. Close, but not perfect, typical of an untrained consumer
4. Poor selection, other selections are much better
5. Terrible, unacceptable, even for a consumer.

The expert was asked to give integer grades and keep uni-
form intervals between grades. After she made her choice, we
presented her the system’s results and asked her to rate them as
previously. The system’s and expert’s results were then compared
and analyzed.

The expert gave the grade 1, meaning “perfect”, to 29 of the
63 paints selected by our system, while she similarly rated 47 of
her own choices. The grades occurrences can be seen in Figure
5. The system and expert top choices match for one third of the
objects, but the remaining results are also good. Many different
paint patches have very similar CIECAM02 values, especially in
beige tones. The expert graded most of the system results 1 - as
right on - or 2 - good for an expert. The average grades are 2.09
(σ = 1.34) and 1.57 (σ = 1.21) for the system and expert, respec-
tively. These results are satisfying, but do not take into account
the quality of the color correction.

Color correction accuracy
The color correction matrix A maps the target patch values

extracted from an image onto reference values. We can visualize
this color correction by looking at the convex hulls of the refer-
ence, image extracted, and color corrected target values in nor-
malized sRGB. Figure 2 shows two examples of color correction
and the corresponding target values in sRGB.

Due to the variety of non lambertian and textured materials in
the set, the quality of the color correction cannot be estimated us-
ing sample reflectance spectra. However, it can be estimated using
the target patches, which are known, and a leave-one-out method.
Each target patch is successively corrected using a color correc-
tion transform computed from the 23 remaining patches. The er-
ror in color correction is computed as the difference between the
patch image extracted normalized sRGB values after color cor-
rection and the corresponding reference values. This is done for
the 24 patches extracted from the 63 images, i.e. for a total of
1512 patches. The average error in normalized sRGB target val-
ues is 2.02% (σ = 1.02%). The equivalent error in CIECAM02
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Figure 6. ΔE02 (Eq. 4) error amplitude in color correction for each of the

9 targets. The results are obtained using a leave-one-out approach on the

target patches. The bars show the standard deviation σ .

Figure 7. ΔE02 differences between the object and paints colors as a func-

tion of the grades given by the expert computed for the 38 samples satisfying

Equation (5). Δab stands for
√

Δa2 +Δb2. The bars show the standard devia-

tion σ . Only one sample was graded as 4.

is ΔE02 = 2.19 (σ = 1.17). Figure 6 shows the color correction
ΔE02 errors for each of the 9 targets. The error is target dependent.

The color correction of an object is good if its color is sim-
ilar to the colors in the calibration target. In other words, the
color correction accuracy depends on whether the object color is
located “close enough” to the volume formed by the target val-
ues in sRGB. The targets gamuts do not fill the entire sRGB cube,
i.e. the targets are not optimal for all the samples. We tested which
samples are accurately color corrected by looking at the position
of the object color in sRGB with respect to the convex hull of
the corresponding calibration target. We used as criterion the dif-
ference in volume between the convex hulls of the target points
with the object color point Vt+o and of the target points alone Vt .
The color correction is classified as sufficient if the difference in
volume is less than 10%, i.e if

Vt+o −Vt

Vt
< 0.1 . (5)

38 samples satisfy the criterion. The distribution of grades among
these 38 samples is as follows: 18 samples receive a 1, 12 samples
a 2, 3 samples a 3, 1 sample a 4, and 4 samples a 5. The remaining
25 samples will be ignored for a more precise analysis in the fol-
lowing results. Figure 5 takes all 63 samples into account, while
Figures 7 to 9 use the 38 samples satisfying (5).

Note that this procedure can be used to provide feedback to
users and help them dynamically choose the calibration target.
Future versions of the system will be able to test whether the ob-
ject color falls within the target gamut and indicate whether the
object can be adequately color corrected. If it is not the case, the
system will indicate which target the users should employ.

Figure 8. The distance between the crosses and the origin corresponds to

the CIECAM02 differences ΔE02 between the paints and objects computed

for the 38 samples satisfying Equation (5). The angles represent the objects

hues. The color of the crosses corresponds to the grades - 1 is green (18

samples), 2 is cyan (12 samples), 3 is blue (3 samples), 4 is magenta (1

sample), and 5 is red (4 samples). The colored lines correspond to the paints

in the database ordered by their hue angle.

Expert rating correlates with ΔE02 differences
The goal of this experiment is to determine if we can give

automated color advice that an expert would consider as good.
The two critical factors are the quality of the color correction and
the metric used to match the objects with the paint samples. We
have seen that, when the target is correctly chosen according to
the object’s color, the color correction is “good” with an accuracy
of 2.02% in sRGB.

We assume that we can mimic how an expert matches the
sample and paint colors by minimizing the CIECAM02 distance
between them. We verify the validity of this assumption by com-
paring the CIECAM02 distance (4) used by the system to assign
matches with the grades the expert gave to the results. Figure
7 clearly shows that the paints that are close to the object in
CIECAM02 (ΔE ∼ 5) get the best grade 1. Figure 7 also shows
that the difference in (a,b) is more critical than the difference
in lightness J, larger distances Δab correspond to poorer grades
(middle plot), while the distance in lightness ΔJ does not ex-
hibit any specific relation with the expert’s grades (right plot).
Figure 8 shows the same CIECAM02 differences as Figure 7,
ΔE02 distances being represented on a polar plot. The radius,
i.e. the distance between a cross and the origin, corresponds to
the CIECAM02 difference between the object and the selected
paint. The polar angle corresponds to the object hue. The colored
lines correspond to the 252 paints in the database, also ordered
by their hue angle. This alternative representation of the results
shows how the objects and paints are distributed in hue. It also
shows that bad grades 4 and 5 (magenta and red crosses) mostly
correspond to object hue angles for which the paint density in the
database is low.

A modified metric for better results
The above results suggest that hue plays a more important

role to the expert than lightness when choosing color matches.
The current metric (4) can be modified to give less weight to light-
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Figure 9. The metric is optimized by weighting the lightness J with respect

to (ac,bc) by varying α. The optimum is chosen as α such that the highest

number of system and expert recommendations match.

ness. Moreover, the CIECAM02 model defines cartesian coordi-
nates that are better perceptual attributes than the approximated
cartesian coordinates 100a an 100b used in (4). The Cartesian
coordinates (ac,bc) for chroma are defined as [3]

ac = C cos(h) and bc = C sin(h) , (6)

where C is the chroma and h the hue angle. We tested a new
metric by varying the parameter α ∈ [0,2] in

ΔEc,α
02 =

√
(2−α)(Jo − Jp)2 +α [(ac,o −ac,p)2 +(bc,o −bc,p)2]

(7)

in order to better match the expert method of picking color
matches. When α = 1, Equation 7 simply becomes

ΔEc
02 =

√
(Jo − Jp)2 +(ac,o −ac,p)2 +(bc,o −bc,p)2 . (8)

We varied α by 0.01 steps and ran our system for each α . We
computed how many newly assigned paints match with the expert
choices for each iteration. Figure 9 shows the result of the opti-
mization. We see that giving slightly more weight to the ac and
bc components gives better results. The maximum is centered
around α ∼ 1.2. Looking at the two extreme cases α = 0 and
α = 2 also shows that hue is more important than lightness for the
expert. Indeed, completely discarding the lightness (α = 2) still
gives some matching results, while we do not obtain any match
when α = 0.

Conclusion
Accurate color cannot be retrieved from uncalibrated images

taken with uncalibrated cameras. However, a limited range of
colors can be estimated by using appropriate color information
in the form of a target present in the scene. A color transform
mapping the scene target color values onto pre-computed target
reference values is computed by least mean square estimation in
sRGB and applied to the entire image. The least mean square
estimation of the color correction matrix in sRGB allows a fast
and computationally low-cost color correction.

We demonstrate that this method can be successfully applied
to Home Décor applications. Any color can be corrected using
a limited number of color calibration targets. When the colored
object is within the target colors’ convex hull, its color is corrected

with an accuracy of ΔE02 ∼= 2.19 (ΔEc
02

∼= 2.03).
We show that we can assign coordinated colors to any col-

ored object by minimizing a CIECAM02 distance between the
object color and a database of paints. We obtain results similar
to what an expert would achieve. The metric can be modified by
giving more weight to hue to even better match the expert’s selec-
tion.

The method assumes a uniform illuminant across the image,
but shadows and mixed illuminants can be important sources of
error. The variety of texture and reflective properties of objects in
Home Décor can also lower the color correction accuracy.

We demonstrated the validity of our color correction method
in the specific framework of Home Décor. However, the method
can be easily generalized to other applications.
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