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Abstract
In this paper we compare different image quality measures

for the gamut mapping problem, and validate them using psycho-
visual data from four recent gamut mapping studies. The psycho-
visual data are choice data of the form: given an original image
and two images obtained by applying different gamut mapping
algorithms, an observer chooses the one that reproduces the orig-
inal image better in his/her opinion. The scoring function used to
validate the quality measures is the hit rate, i.e., the percentage
of correct choice predictions on data from the psycho-visual tests.
We also propose a new image quality measure based on the differ-
ence in color and local contrast. This measure compares well to
the measures from the literature on our psycho-visual data. Some
of these measures predict the observer’s preferences equally well
as scaling methods like Thurstone’s method or conjoint analysis
that are used to evaluate the psycho-visual tests. This is remark-
able in the sense that the scaling methods are based on the experi-
mental data, whereas the quality measures are independent of this
data.

Introduction
Gamut mapping describes how a color image is rendered on

a device with limited color reproduction capabilities. This classi-
cal problem is still an area of active research – Morovic gives a
good recent overview [1]. An important step in improving gamut
mapping algorithm is an accurate evaluation of its psycho-visual
performance. This is traditionally achieved using psycho-visual
tests, where observers have to decide which of the mapped im-
ages are the better representation of the original. The data gath-
ered in such a test are typically evaluated using Thurstone’s Law
of Comparative Judgement [2]. An alternative approach that we
want to evaluate here is to use an image quality measure (indepen-
dent of observer feedback) to measure the difference of a mapped
image to the original. An overview of the state of the art in image
quality research can be found for example in [3] or [4]. Image
quality measures are successfully used in many imaging appli-
cations, such as modeling image distortions, especially in data
compression [5]. The advantage of using “good” image quality
measures to evaluate gamut mapping algorithms is that they can
be used to automatically predict the perceived quality of a mapped
image without the need for a new psycho-visual study. Psycho-
visual tests generally give reliable results for tested settings but
the tests are time consuming. Furthermore, an extrapolation to
changed settings and new images is problematic. Computing an
image quality measure on the other hand provides results imme-
diately. The challenge is to find a measure that correlates well
with observers’ preferences. It has to represent the response of
the human visual system as a mathematical function.

For gamut mapping the main image quality factors are

preservation of lightness/color and preservation of spatial details.
Artifacts introduced by the mapping algorithms may also be a fac-
tor which, however, will be neglected in the present study. Some
factors encountered in other image quality applications such as
noise or compression artifacts are of minor importance for gamut
mapping.

The main topic of this paper is a quantitative comparison of
the performance of image quality measures with data driven qual-
ity measures from psycho-visual tests. The performance of the
measures is assessed as the percentage of correctly predicted ob-
server choices on data from a psycho-visual test. The data used
to compute these percentages were neither used for data evalua-
tion nor for the optimization of the corresponding measures (com-
pare Section ”Validating the quality measures”). Correlations of
psycho-visual gamut mapping evaluation and image quality mea-
sures have been published before in [6], where only a general
ranking of gamut mapping algorithms has been discussed. Our
focus here is on predicting observers’ choices in individual com-
parisons between mapped images.

The remainder of this paper is organized as follows: In the
next two sections we describe the image quality measures con-
sidered in this paper. Then Thurstone’s method and an extension
to conjoint analysis are briefly described as methods for evalu-
ating psycho-visual test data. In the subsequent section we de-
scribe how to validate the different image quality measures for
gamut mapping. The data sets which we used for validation are
described in a section on its own. Finally, we discuss the experi-
mental validation results on data sets and conclude the paper.

Image quality measures
In this section we review the image quality measures that

we have compared. We always compare two images X and Y
with n×m pixels. At the pixels xi j ∈ X and yi j ∈ Y , respectively,
we consider color coordinates. Mostly we are using the lightness
coordinate L in CIELAB color space. If not stated otherwise we
do not distinguish in our notation between a pixel and the color
coordinate considered at this pixel.

Structural Similarity Index (SSIM)
The Structural Similarity Index was introduced by Wang

et. al. [7] and is defined on quadratic image patches of size k× k
at the same location within image X and Y . We computed SSIM
for the L coordinate in CIELAB color space. Let PX ⊂ X be such
a patch and PY the corresponding patch for Y . We compute the
following quantities for the patches:

P̄X =
1
k2 ∑

x∈PX

x, P̄Y =
1
k2 ∑

y∈PY

y,
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Figure 1: The original image (on the left) and two gamut mapped images (in the middle and on the right). For the image in middle we have
QΔE = 24.65 and QΔLC = 0.341 using HPminDE without detail enhancement, and on the right we have QΔE = 27.00 and QΔLC = 0.318
using HPminDE with details enhancement. Note for the image in the middle QΔE is smaller than for the image on the right, but the
middle image has lost a lot of details and has the larger perceptual distance from the original (left image).

σPX
2 =

1
k2 −1 ∑

x∈PX

(x− P̄X )2
,

σPY
2 =

1
k2 −1 ∑

y∈PY

(y− P̄Y )2 , and

σPX PY =
1

k2 −1

k2

∑
i=1

(xi − P̄X )(yi − P̄Y )

The Structural Similarity Index is then defined as

SSIM(PX ,PY ) =
(2P̄X P̄Y +c1) (2σPX PY +c2)(

P̄2
X + P̄2

Y +c1
)(

σ2
PX

+σ2
PY

+c2

) ,

with two constants c1 and c2. As proposed by Wang et. al. [5] we
used c1 = 1 and c2 = 9 for these constants and k = 8 for the patch
size.

From the Structural Similarity Index the image quality mea-
sure QSSIM(X ,Y ) can be defined as the Structural Similarity In-
dex SSIM averaged over all possible k× k patches in the images
X and Y . The resulting measure is in the range [−1,1], and the
higher the QSSIM value, the more similar are the compared im-
ages.

Laplacian mean square error (LMSE)
Like the Structural Similarity Index the Laplacian Mean

Square Error (compare [8]) is a local measure for the difference
in two images. We compute the following quantities at each pixel
(more exactly at L coordinate in CIELAB color space of each
pixel, with indices 2 ≤ i ≤ n−1 and 2 ≤ j ≤ m−1) of X and Y ,
respectively:

L(xi j) = x(i+1) j +x(i−1) j +xi( j+1) +xi( j−1) −4xi j

and

L(yi j) = y(i+1) j +y(i−1) j +yi( j+1) +yi( j−1) −4yi j

The image quality measure QLMSE is then defined as

QLMSE(X ,Y ) =
1

(n−2)(m−2)

n−1

∑
i=2

m−1

∑
j=2

(
L(xi j)−L(yi j)

)2
.

Mean square error (MSE)
We also consider the mean square error which is just the

squared pointwise difference between the images X and Y . The
corresponding image quality measure QMSE is defined as

QMSE(X ,Y ) =
1

nm

n

∑
i=1

m

∑
j=1

(xi j −yi j)2,

where xi j and yi j are L coordinates in the CIELAB color space for
the points in images X and Y respectively.

Discrete wavelet transform (DWT)
The discrete wavelet transform image quality measure has

been defined in [9]. Images X and Y are compared as follows:
a discrete wavelet transform is applied to the luminance layer of
image X and Y , respectively. Let M f

X be the magnitudes of the dis-
crete wavelet transform coefficients obtained for X and frequency
band f , and let M f

Y be the corresponding magnitudes for image Y .

From M f
X and M f

Y the absolute values of differences

d f
i (X ,Y ) =

∣∣∣M f
X i −M f

Y i

∣∣∣ , i = 1, . . . ,
∣∣∣M f

X

∣∣∣=
∣∣∣M f

Y

∣∣∣ .

are computed for each frequency band. Let σf (X ,Y ) be the stan-

dard deviation of the differences d f
i (X ,Y ) for frequency band f .

Now, the QDWT(X ,Y ) image quality measure is defined as the
mean of the σ f (X ,Y ) for all the frequency bands.

In our implementation we use Daubechies’ filter [10] to
compute the discrete wavelet transform image quality measure
QDWT.
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A new quality measure
The quality measure that we are going to describe in this sec-

tion is based on the observation that important factors determin-
ing the quality of gamut mapping algorithms are color preserva-
tion and contrast (detail) preservation. We estimate the degree
of color preservation by using the CIELAB ΔE distance mea-
sure [11]. The example in Figure 1 demonstrates that QΔE , i.e.,
the quality measure derived from ΔE, alone is not an accurate
quality measure since it neglects the preservation of details. To
account also for detail preservation we introduce a contrast pre-
serving measure that we call QΔLC . Our quality measure is then a
linear combination of QΔE and QΔLC . Below we describe the two
measures QΔE and QΔLC in more detail.

The measure QΔE
ΔE is defined as the Euclidean distance in CIELAB color

space between corresponding pixels in two images X and Y of
size n×m. That is, locally at pixel x ∈ X and the corresponding
pixel y ∈Y the ΔE distance is defined as:

ΔE(x,y) =
√

((Lx −Ly)2 +(ax −ay)2 +(bx −by)2)

As our image quality measure QΔE we take the average ΔE over
the pixels of the two images, i.e.,

QΔE(X ,Y ) =
1

nm

n

∑
i=1

m

∑
j=1

ΔE(xi j,yi j).

ΔE is a popular image quality metrics since it is easy to compute
and has a natural interpretation, though in principle it could be
replaced by any more sophisticated color distance measure such
as CIECAM02 [12], or ΔE94 [13].

The measure QΔLC
The image quality measure QΔLC is based on a local con-

trast measure. We chose the Michelson contrast, see [14], as our
measure of local contrast. We compute the Michelson contrast on
a k× k patch PX ⊂ X of the image X as follows (we were using
k = 5,17 and 33 in our experiments):

LC(PX) =
xmax −xmin

xmax +xmin
,

where x is an luminosity coordinate in XYZ color space (at pixel
x ∈ PX ), and xmax and xmin are the highest value and the lowest
value, respectively, of this intensity on the patch PX . Analogously,
we can compute the value LC(PY ) for the corresponding patch PY

in image Y , and define

ΔLC(PX ,PY ) = |LC(PX)−LC(PY )|.
The image quality measure QΔLC(X ,Y ) is then finally defined as
the measure ΔLC averaged over all possible k × k patches in im-
ages X and Y .

Thurstone’s method and conjoint analysis
Traditionally image quality in gamut mapping is evaluated

using Thurstone’s Law of Comparative Judgement, which can be
used to analyze paired comparison data [2]. Applying Thurstone’s
law allows to derive a value for each tested gamut mapping algo-
rithm. Thurstone’s method has been extended to a conjoint anal-
ysis of parameterized gamut mapping algorithms [15, 16]. In a

conjoint analysis we still have paired comparison data, but instead
of assigning a single value to a mapping algorithm we now assign
it to all the parameters employed in the algorithms and sum up
those scale values.

We use both methods to obtain image quality measures for
images mapped with a gamut mapping algorithm on a image test
set. These measures serve as a reference for the image quality
measures discussed before, which do not need observer feedback
in contrast to Thurstone’s method or conjoint analysis.

To improve the consistency of results obtained by Thur-
stone’s method or conjoint analysis, one can individualize the
evaluation for each image. Individualization linearly combines
Thurstone’s scale values for the entire data set with scale values
obtained separately for each image. The linear combination of
those two scale values is then optimized to hold out data using
cross validation. It turns out that scale values computed individu-
ally for images can be good, but typically they can be improved by
shrinking them towards the scale values computed on the whole
population of images (simply because in most cases there are not
enough paired comparisons per image available). In a nutshell,
the idea behind the individualization approach is providing a fall-
back when only few paired comparisons are available for an im-
age. We will refer to these method as individualized Thurstone’s
method and individualized conjoint analysis, respectively.

Validating the quality measures
We need to validate the suitability of an image quality mea-

sure for gamut mapping. Our validation procedure estimates how
well the quality measures align with observer ratings which we
obtained in psycho-visual tests. As we have mentioned before, the
data we elicited in the psycho-visual test are of the form: given
an original image and two images obtained by applying differ-
ent gamut mapping algorithms, a user chooses the one that repro-
duces the original image better in his/her opinion. We validate
an image quality measure now by the percentage of correctly pre-
dicted observer choices. This validation measure is also known
as hit rate. When computing hit rates for Thurstone’s method
or conjoint analysis we need to be careful that we do not vali-
date the methods on the same data which we used to teach the
model (remember that Thurstone’s method and conjoint analysis
are, in contrast to the other image quality measures, observer data
driven). To circumvent this problem we use cross validation, i.e.,
we use part of the data to teach the models and the remaining part
to validate the models. In the following we give more detail on
how to compute hit rates and on how we employed cross valida-
tion.

Hit rate
For each paired comparison in a psycho-visual test we know

the choice of the observer. In some tests we allowed ties, i.e.,
neither of the two options was preferred. We omit such ties from
further analysis. Let C be the set of non-tied observer choices.
For an image quality measure we always predict the choice with
the higher value for this measure on the elements in C. Let S ⊆C
be the subset of correctly predicted choices. Then the hit rate is
defined as

HR =
|S|
|C| ,
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where |S| and |C| are numbers of elements in sets S and C, respec-
tively.

Cross Validation
For Thurstone’s method and for conjoint analysis we use

cross validation. That means, that the set C of non-tied observer
choices is partitioned randomly into ten subsets of equal size. Out
of the ten subsets, one is retained for validating the model, and
the remaining nine subsets are used as training data. This is re-
peated ten times, where each subset is used as the validation set
once. The mean hit rate on the ten validation data sets is used as
validation quality measure. In Figure 3 we refer to this method as
Thur gen.

For the individualized Thurstone’s method, we carried out a
double cross validation. For double cross validation we use eight
of the ten subsets as training set, one as optimization set, and the
remaining one for validation. We compute general and individual
scale values by Thurstone’s method on the training set. Then we
optimize the weights for the linear combination of the population
and individualized scale values using an optimizing set. Finally,
we use the hit rate on the validation set. We repeat this process
250 times and use the mean of the mean hit rates as validation
quality measure. We refer to this method in Figure 3 as Thur
spec.

Data sets
The different image quality measures were validated on im-

age data of four recent gamut mapping studies. All tests used
paired comparison, where two mapped images were compared
to an original image. Three of the tests were carried out in a
laboratory environment following the CIE guidelines [17] with
ISONewspaper gamut as the target gamut. The fourth study was
on a parameterized gamut mapping algorithm [16, 18] and the
major part of it has been carried out over the internet. Detailed
data on the size of these studies are summarized in Table 1. In the
following we summarize the main ideas of the four studies.

Study 1: Basic Study (BS)
This study is a traditional benchmark study comparing some

newer image dependent gamut mapping algorithms to known ref-
erence algorithms. In addition to the reference algorithms HP-
minDE, SGCK [17], the following algorithms using image gamut
or spatial gamut mapping have been considered: the algorithm
NOptStar that is using the image gamut as described in [19], the
Kolas algorithm [20], the Zolliker algorithm [21] applied to the
SGCK and NOptStar algorithms, and the Caluori algorithm [22].
For this study 97 images were used, each mapped with seven al-
gorithms. Each possible comparison was made at least once. We
will refer to this study as Basic study or simply BS.

Study 2: Image Gamut (IG)
The topic of this study was the use of image gamut descrip-

tions for gamut mapping [19]. We considered algorithms using
a linear and sigmoidal mapping, each of them had three possi-
ble source gamuts, namely device gamut (sRGB) and two types
of image gamut description. The six possible combinations were
compared to HPminDE and SGCK, resulting all together in eight
algorithms. 75 images were used. Each possible comparison was
made approximately twice. We will refer to this study as Image

Gamut study or simply IG.

Study 3: Local Contrast (LC)
In this study the influence of detail enhancement applied to

a set of gamut mapping algorithms was investigated [21]. The
study comprised the HPminDE, SGCK, SGDA [23] algorithms
and a linear compression algorithm. All algorithms were com-
pared with and without detail enhancement. 77 images were used,
and 5376 comparisons have been performed. Each possible com-
parison was made approximately 2.5 times. We will refer to this
study as Local Contrast study or simply LC.

Study 4: Parameterized Gamut Mapping (PGM)
In this study ([15, 16]) a master algorithm with a set of pa-

rameters was studied. The parameters include compression type,
detail enhancement, color space, gamut size as well as color, light-
ness and hue shifts. 97 images were used. Due to parameteriza-
tion the number of possible algorithms per image was as high as
1536, and 5058 comparisons have been elicited. For the evalu-
ation conjoint analysis was used. We will refer to this study as
Parameterized Gamut Mapping study or simply PGM.

Study Images Comparisons Algorithms

BS 97 2086 7
LC 77 5376 8
IG 75 4360 8
PGM 97 5058 1536

Table 1: Number of images, comparisons and algorithms in the
four considered studies.

Experimental results
The main results of validating the different image quality

measures on the four psycho-visual tests are summarized in Fig-
ure 3. Additionally, in Figure 2 we present the hit rates for indi-
vidualized Thurstone’s method or conjoint analysis. As expected,
hit rates for training sets are higher than for test sets. Individ-
ualization improves training set hit rates, however this does not
always translate to improvement over the test set.

Overall, the Structural Similarity Index measure (SSIM)
proved to be the best performing image quality measure. On the
BS, LC and IG studies it scores higher than the competing mea-
sures, and on the PGM data it is close behind the best of the other
methods (our new measure – a combination of QΔE and QΔLC[
with k = 5]).

Interestingly, the results obtained with Thurstone’s method
are not significantly better than those resulting from image qual-
ity measures. In particular, results for Thurstone’s method with-
out individualization are comparable to results obtained for SSIM,
i.e., the hit rates differ by only up to two percents. On BS data,
the results obtained with SSIM are even better than those coming
from Thurstone’s method.

On the studies LC and IG the individualized Thurstone’s
method gives better results than the competing measures, but not
on the remaining two studies BS and PGM. A probable reason
for this behavior is the size of the studies. The performance of
the individualized Thurstone’s method improves with increasing
number of comparisons, and image quality measures can compete
with it as long as the number of comparisons is relatively small.
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Figure 2: Hit rates using Thurstone’s method or conjoint analysis for: (a) Basic Study, (b) Local Contrast Study, (c) Image Gamut Study,
and (d) Parameterized Gamut Mapping Study. The blue (higher) line shows the hit rate on the training set, the green (lower) line shows
the hit rate on the test set. Scale values (sv) are computed as a convex combination of scale values for the whole population of images
(svgroup) and scale values for individual images (svind ), i.e., sv = α · svind +(1−α) · svgroup with α > 0.

For the LC and IG studies the same comparison was tested
approximately 2 and 2.5 times respectively more than for the BS
study, thus giving more information for the individual images.
Hence the results for individual images obtained from individual-
ized Thurstone’s method are more exact on these studies than on
the other studies. However, individualized Thurstone’s method
is extremely inefficient in a sense that it requires a lot of time
and observers for testing. On the BS study, where the amount of
comparisons per image is the lowest, the individualized version of
Thurstone’s method is hardly better than the ordinary Thurstone’s
method.

On the PGM study all investigated image quality measures
give better results than the individualized conjoint analysis, i.e.,
for this study it is more difficult to predict choices using conjoint
analysis and easier using image quality measures. On this study
all computed hit rates are relatively high compared to the other
studies. This is due to the relatively large differences between the
images used for that study, i.e., the decisions in the paired compar-
isons were easier. At the same time, this study required conjoint
analysis to compute scale values for all algorithms. Therefore
more comparisons were needed to obtain statistically significant
results and apparently the number of comparisons per image was
not high enough to yield a higher hit rate than for the global eval-
uation.

We considered two pointwise image quality measures,
namely QΔE and the mean square error QMSE. On all studies
except PGM, these measures scored lower than their competitors,
often showing hit rates close to random choice, i.e., 50%. This is
because all gamut mapping algorithms tested in these studies al-
ready optimize color preservation in one way or the other. Hence,
observers’ choices are more affected by detail preservation. In
particular, clipping algorithms, for example the HPminDE algo-
rithm, are optimizing the transformed image against the pointwise
distance measure, but ignores the detail preservation issue.

As noted above, the pointwise measures perform better on
the PGM study. The reason is that many paired comparisons in-
cluded a choice among different destination gamut sizes. Large
differences in the size of the destination gamut have a large impact
on the perceived image quality and at the same time are strongly
correlated with QΔE . The differences in QΔE of mapped images
are higher, and they are well correlated with the perceived quality
of the image. A suitable combination of QΔE and QΔLC scored
highest on this study, even higher than the SSIM measure.
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Figure 3: Hit rates obtained by different methods for four studies.

On each study the results obtained for the best measures are
relatively similar, i.e., differences are within 5% in hit rate. The
theoretical hit rate limit of 1.0 cannot be reached, because ob-
servers typically differ in their choices and even the decisions of
a single observer may be inconsistent, i.e., the same person, un-
der the same conditions can make a different choice on the same
images in repeated paired comparisons.

Conclusions
We showed that image quality measures can be a useful and

efficient method to gauge the quality of mapped images in gamut
mapping. Overall, the best performing measure was the Structural
Similarity Index (SSIM): it predicts choices of respondents simi-
larly successfully as Thurstone’s method. Better predictions can
be achieved by computing individualized Thurstone’s scale val-
ues, but only if enough test data is available. Also, simple combi-
nations of measures of color distance (QΔE) and detail preserva-
tion (QΔLC) is very promising. We can expect a further improve-
ment when we combine it with a measure for gamut mapping ar-
tifacts.

We can conclude that image quality measures like SSIM can
be used for predicting choices in psycho-visual tests concerning
the evaluation of gamut mapping algorithms. Evaluating gamut
mapping algorithms automatically by using image quality mea-
sures can be an attractive alternative to psycho-visual test when-
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ever the latter are too expensive or difficult to carry out.
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