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Abstract
A standard approach to generating a greyscale equivalent to

an input colour image involves calculating the so-called struc-
ture tensor at each image pixel. Defining contrast as associated
with the maximum-change direction of this matrix, the grey gradi-
ent is identified with the first eigenvector direction, with gradient
strength given by the square root of its eigenvalue. However, aside
from the inherent complexity of such an approach, each pixel’s
gradient still possesses asign ambiguity, since an eigenvector is
given only up to a sign. This is ostensibly resolved by looking at
how one of the R,G,B colour channels behaves, or how the the
luminance changes. Instead, we would like to circumvent the sign
problem in the first place, and also avoid calculating the costly
eigenvector decomposition. So here we suggest replacing the
eigenvector approach by generating a greyscale gradient equal
to the maximum gradient amongst the R,G,B gradients, in each of
x, y. But in order not to neglect the tensor approach, we consider
the relationship between the complex and the simple approaches.
We also note that, at each pixel, we have both forward-facing and
backward-facing derivatives, which are different, and we consider
a tensor formed from both. Then, over a standard training set, we
ask for an optimum set of weights for all the maximum gradients
such that the simple maxima scheme generates a greyscale struc-
ture tensor to best match the original, colour, one. We find that
a simple scheme that facilitates fast solutions is best. Greyscale
results are shown to be excellent, and the algorithm is very fast.

1. Introduction
Colour images contain information about the intensity, hue

and saturation of the physical scenes that they represent. From
this perspective, the conversion of colour images to black and
white has long been defined as: The operation that maps RGB
colour triplets to a space which represents the luminance in a
colour-independent spatial direction. As a second step, the hue
and saturation information are discarded, resulting in a single
channel which contains the luminance information.

In the colour science literature, there are, however, many
standard colour spaces that serve to separate luminance infor-
mation from hue and saturation. Standard examples include:
CIELab, HSV, LHS, YIQ etc. But the luminance obtained from
each of these colour spaces is different.

Assuming the existence of a colour space that separates lu-
minance information perfectly, we obtain a greyscale image that
preserves the luminance information of the scene. Since this in-
formation has real physical meaning related to the intensity of the
light signals reflected from the various surfaces, we can redefine
the task of converting from colour to black and white as: An op-
eration that aims at preserving the luminance of the scene.

In recent years, research in image processing has moved
away from the idea of preserving the luminance of a single im-
age pixel to methods that include spatial context, thus including

simultaneous contrast effects. Thus we need to generate the in-
tensity of an image pixel based on its neighbourhood. Further, for
certain applications, preserving the luminance information per se
might not result in the desired output. As an example, an equi-
luminous image may easily have pixels with very different hue
and saturation. However, equating grey with luminance results
in a flat uniform grey. So we wish retain colour regions while
best preserving achromatic information. Finally, in a recent study,
Connah et al. [1] compared six algorithms for converting colour
images to greyscale. Their findings indicate that the use of spatial
algorithms results in visually preferred rendering.

To proceed, we state that a more encompassing definition of
colour to greyscale conversion is: An operation that reduces the
number of channels from three to one while preserving certain,
user defined, image attributes. As an example, Bala and Eschbach
[2], introduced an algorithm to convert colour images to greyscale
while preserving colour edges. This is achieved by transforming
the RGB image to an opponent colour space, extracting the lumi-
nance image and adding chrominance edges that are not present
in the luminance. In this sense, the algorithm aims at preserving
chrominance edges.

In this paper, we present an algorithm that builds upon the
work of Socolinsky and Wolff [3, 4], who developed a technique
for multichannel image fusion with the aim of preservingcon-
trast. In their work, these authors use the Di Zenzo structure-
tensor matrix [5] to represent contrast in a multiband image. The
interesting idea added to [5] was to suggest re-integrating the gra-
dient produced in Di Zenzo’s approach into a single, representa-
tive, grey channel encapsulating the notion of contrast.

We briefly recapitulate this method here, and start by defin-
ing the contrast in a greyscale image as the directional derivative
of the image intensity map in the maximum-change direction join-
ing the given pixel with its neighbours. In other words, greyscale
contrast is the maximum intensity variation due to an infinitesi-
mal spatial variation. Socolinsky and Wolff’s work shows that it
is possible to use the Di Zenzo matrix definition of contrast in an
n-dimensional image to formulate an equivalent greyscale output.

The Di Zenzo matrix allows us to represent contrast at each
image pixel by utilising a2×2 symmetric matrix whose elements
are calculated based on the derivatives of the colour channels in
the horizontal and vertical directions. Socolinsky and Wolff de-
fined the maximum absolute colour contrast to be the square root
of the maximum eigenvalue of the Di Zenzo matrix along the di-
rection of the associated eigenvector. In [3], Socolinsky and Wolff
noted that the key difference between contrast in the greyscale
case and that in a multiband image is that, in the latter, there is no
preferredorientationalong the maximum contrast direction. In
other words, contrast is defined along a line, not a vector. To re-
solve the resulting sign ambiguity, the authors suggest having the
orientation of one of the colour channels, or alternatively the lu-
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minance function, serve as a representation of a smooth function
indicating vector sense.

The contribution of this paper is twofold. Firstly, we present
an algorithm to calculate contrast in colour and multiband images
that does not require the calculation of the eigen-decomposition
of the Di Zenzo matrix. Instead, we make use of simple gradient
maxima of each of the colour channels, both in the forward-facing
gradient direction and in the backward-facing one. This results in
a much faster achromatic approximation ofn-dimensional con-
trast but also, and most importantly, obviates the sign-ambiguity
problem and as a result removes unpleasant artifacts that result
from getting the sign wrong. The second contribution is that our
algorithm incorporates a definition of orientation that is indepen-
dent of any particular single colour channel. Finally, using non-
linear optimisation we show that there is a mathematical equal-
ity between the new definition of contrast and that obtained by
Di Zenzo’s matrix: we generate a greyscale representation that
produces a Di Zenzo matrix that, in a least-squares sense over a
set of training images, best matches the original tensor that de-
rives from the colour image. Thus we import into the grey regime
the same definition of colour contrast, but generated in a simple
involving color-channel gradient maxima. The resulting scheme
can be implemented as a very fast Fourier-based algorithm.

2. Colour Contrast and Grey Contrast
Suppose a colour image is denotedρ , with componentsk =

1..3. Let the two components of the gradient image for channel
k = 1..3 beρk

,x, ρk
,y: respectively the partial derivatives∂ρk/∂x

and∂ρk/∂y. Then we can form Di Zenzo’sstructure tensorZ as
the symmetric2 × 2 matrix
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SinceZ is symmetric, its eigenvectors form an orthogonal matrix,
V , with columnsv such that

Z v i = λv i, i = 1..2 (2)

The eigenvector associated with the largest eigenvalue points in
the (unsigned) direction of of maximum contrast [5]. So the gra-
dient direction for generating an output greyscale image is taken
to be the maximum-eigenvalue directionv = v 1.

Now for a grey imageg, the Di Zenzo matrix becomes in-
stead

Z g = 3

(

g,xg,x g,xg,y

g,xg,y g,yg,y

)

(3)

with the 3 to match theZ from eq. (1) for a colour image.
The question we would like to answer is: GivenZ , belong-

ing to the original colour image, what greyscale representationg
produces a Di Zenzo matrixZ g that best matches the matrixZ
for the input colour image?

Clearly, we could use the maximum-contrast direction
v above, and generate a greyscaleg from v and the gradient
strength given by the square root of the first eigenvalue. However,
we would like to in the first place generate a grey gradient without
the speed penalty of finding eigenvectors, and as well we would
like to circumvent the issue of choosing a gradient vector sense
— i.e., the problem that sign is not defined for an eigenvector.

We argue that we can solve both these problems by the
straightforward scheme of using the maximum change over all the
colour channels, R,G,B, as a simple but effective approximation to
the eigenvector approach. Moreover, we notice that at each pixel
there are two possible choices for the maximum gradient, since
we can use either front-facing and backward-facing derivatives
(speaking of the horizontal direction; and similarly for the vertical
direction). Is there a combination ofall the gradient information
available in all these colour gradients derived from maxima, such
that we can get a best approximation to Di Zenzo’s definition of
contrast?

3. Fast Maximum Algorithm
In Di Zenzo’s paper [5] the author states that simpler repre-

sentative grey versions of the colour gradient than the eigenvector-
based one above could be used. E.g., the root-mean-square, over
colour, of the colour-channelx-gradients could possibly be used
as thex-component of the representative grey gradient. Alter-
natively, “the RMS could be replaced by the sum, or even the
maximum, of the absolute values of the differences involved.”

Here, our motivation is to make Di Zenzo’s methodfast, by
omitting the eigenvalue determination step entirely, and replacing
it by a simple calculation of themaximum, as suggested. How-
ever, at each pixel we note that we have in fact two possible max-
ima in R,G,B: one forward-facing and (the negative of) another,
backward-facing, as in Fig. 1. So far as we are aware, no-one
has made use of a simple maximum scheme over colour channels,
or of all the information available at each pixel of a multi-valued
image. Here, we look at both differences ending at a pixel, West
and East for the horizontal maximum, and North and South for
the vertical.

Fig. 1 shows the Cartesian direction gradients for each of the
R,G,B colour channels. Here, in the East direction, we would
choose Red as the maximum horizontal component. And for the
vertical South direction, we would choose Blue. Cycling through
Red, Green, and Blue we would thus take as the correct grey gra-
dient component the maximum over all of R,G,B, separately in
each of the two coordinate directions,x andy and separately for
the forward-facing and backward-facing directions.

In the simplest incarnation of the idea now, we could simply
use the East and South maxima as the grey gradient components,
and re-integrating these into a single scalar field, we arrive at a
greyscale output.

But suppose we now ask: In each direction, what combi-
nation of the front-facing and backward-facing maxima over the
colour channels, which we just chose, gives a matrixZ g that best
matches the matrixZ for the input colour image?

4. Learning Maximum-Gradient Weights
In Fig. 1, we show the representative grey gradient as a

dashed vector, centered on the current pixel. This is the gradi-
ent that would be found using an eigenvalue decomposition of
eq. (1). If we use a simple forward-difference definition of deriva-
tive, then, for thex direction, we consider the difference between
the pixel to the right and the current pixel. Usually, we take that
value to be thex-derivative and leave it at that. However, here
we wish to match the (dashed in Fig. 1) gradient, determined by
the Di Zenzo construction, as well as possible and under the con-
straint that we utilise only the maxima in each channel. Since
we in fact have available the colour-differences in all four direc-
tions, we make use of these to obtain a best approximation of the
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Figure 1. Using maximum horizontal and vertical gradients, over colour

channels, versus using the maximum-contrast eigenvector (dashed) of the

Di Zenzo matrix. Here, Red is max in the N direction, Blue is max for S, Red

is max for E, and Green is max for W.

Di Zenzo gradient shown in Fig. 1 from the available maximum
differences shown as the longest undashed arrows.

To do so, we randomly select pixels from various images.
For each location, we generate a Di Zenzo matrixZ g associ-
ated with the grey image produced by using maxima from colour
channel gradients. We select weightsα, β, γ, δ at each pixel loca-
tion so as to to optimally combine the N,S,E,W colour gradients,
where in each of the four directions, the gradient in that direction
is taken to be the largest change over R or G or B. An optimum is
defined as corresponding to that set of weights multiplying these
four maximum change vectors that produces the best match to the
Di Zenzo matrixZ for the original, colour image composed of
both front- and back-facing derivatives.

That is, at a particularx, y, we look for weightsα =
{α, β, γ, δ} such that the gradient∇g satisfies the following op-
timisation:

with colour gradient∇ρ = {ρk
x , ρk

y}, k = 1..3,

find scalar-field gradients

∇gE
,x =

max abs

k
(

ρk,E
,x

)

whereE is the East-facing derivative;
and similarly for W,S,N.

(4)

Now combine the candidate gradient terms into a single gra-
dient pair

g,x = αgE
,x + βgW

,x

g,y = γgS
,y + δgN

,y

(5)

whereα is chosen by the minimisation

min

α ‖Z − Zg‖ (6)

with Z g formed via eq. (3) using∇g = {g,x, g,y}.
Here we used a standard set of colour images1 and sampled

10,000 pixel locations from each image.

1We used the KodakCD images from
http://www.cipr.rpi.edu/resource/stills/kodak.html.
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Figure 2. Optimum weights at each pixel, over random pixels in training

images.

We had expected to find thatα = 0.5 for all four values.
Since the histograms for each component ofα is quite peaked, we
simply used the median for each (see Fig. 2.) We found median
valuesα = {0.530, 0.430, 0.537, 0.443}; these values indicate
a property of natural image statistics. The optimisation is very
quick since it is a quadratic program (and is offline in any event).

Once we have a set of gradients, these must be combined
in order to re-integrate the derivatives∇g into a single, unified
grey imageg. I.e., at pixel(i, j), suppose our maximum-change
gradients aregE

,x, gW
,x , gS

,y, gN
,y , where we are careful to have all

definitions of the sign of gradients facing the same way. We wish
to find greyscale imageg(i, j) such that

α[g(i + 1, j) − g(i, j)] + β[g(i, j) − g(i − 1, j)]+
γ[g(i, j + 1) − g(i, j)] + δ[g(i, j) − g(i, j − 1]
= αgE

,x + βgW
,x + γgS

,y + gN
,y

≡ RHS

or in other words

g(i, j) = {αg(i + 1, j) − βg(i − 1, j)
+γg(i, j + 1) − δg(i, j − 1) − RHS
} /(α − β + γ − δ)

(7)

Clearly, this is an extension of the spatial domain solution of
a Poisson equation. It is an extension because we weight the
forward-facing and backward-facing derivatives differently. We
solve it using Jacobi iteration, with homogeneous Neumann
boundary conditions to ensure zero derivative at the image bound-
aries.

Overall, the idea of using the colour structure tensorZ is
useful, in that we can determine just what combination of max-
imum gradient information best matches the colour gradient.
However, output greyscale images using the above weightsα are
in practice quite close to those simply using one-sided gradients,
i.e., α = {1, 0, 1, 0}. Therefore while in theory the two-sided
gradients do provide more information, in fact the one-sided gra-
dients are faster to calculate and already produce excellent results.

Alternatively, if we were willing to adaptively select weights
α for each image, we could certainly obtain the optimum re-
sult compared to the simplified, one-sided derivative method.
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Generally, the weighted method will produce a smoother output
greyscale than the simplified method, and this may be useful.

5. Fourier-Based Re-Integration of Gradients
Instead of solving in the spatial domain for the greyscale cor-

responding to a putative set of gradients, as in eq. (7), we can
employ a much faster method, employing the transform equa-
tion in the frequency domain. Here we make use of the Frankot-
Chellappa algorithm [6], which works by projecting the putative
set of gradients over an image onto an integrable convex set of
gradients written in Fourier space. This algorithm then essen-
tially takes a second derivative, by multiplying by the transform
of the derivative operator in the frequency domain, and solves the
resulting Poisson equation by going back to the spatial domain.
Again, here we use homogeneous Neumann boundary conditions.
To employ this algorithm, we must make use of one-sided deriva-
tives only, since the transform in frequency space is defined for
simple, unweighted pixel difference operations. Much more com-
plicated methods are indeed available [7], but these are compara-
tively very slow indeed.

Overall, greyscale output image results are very close, for
either an iterative or a Fourier-based approach. The main empha-
sis is that we make use of the maximum over colour gradients,
in each direction. Results shown are from using the simplest and
fastest method — single-sided derivatives and Fourier integration.

5. Experiments
Fig. 3 shows several examples of the new, fast method, com-

pared to using either luminance or Socolinsky and Wolff’s origi-
nal method. Results are seen to be an improvement over the lumi-
nance, and also over the standard approach. In particular, in any
situation where we can easily see colour edges, as in the painting
in the top row of Fig. 3, it is easy to discern integrability errors
associated with Socolinsky and Wolff’s method (as discussed in
[1]), whereas the present method does not produce these. As well,
the method tends to change the dynamic range so that dark and
bright areas are more visible, since it relies on not just the lumi-
nance change, but on the change over all three colour channels to
generate its approximation of contrast.

6. Conclusions
We have outlined a new, fast method for converting still

colour image data to greyscale, based on but not tied to the
Di Zenzo structure tensor approach. Instead of having to calcu-
late eigenvectors at each pixel, we calculate a simple maximum
gradient based on the maximum over all colour channels. Re-
sults are seen to be an improvement over the luminance and also
better than the standard, Socolinsky-Wolff approach (and, paren-
thetically, better than simply using histogram-equalisation on the
luminance). As well, the algorithm is very fast.
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(a) (b) (c) (d)
Figure 3. (a): Original colour image. (b): Luminance. (c): Socolinsky-Wolff greyscale. (d): Present method.
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