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Abstract
CIECAM02 [1] is being used increasingly in color

management systems as a gamut mapping space. There continue
to be issues with using the published transformation in practical
settings, due to the need to gracefully handle non-real world
colors. The approach presented here is to extend the behavior of
CIECAM02 to be unrestricted in range, to fully round trip in
either direction, and do so in a way that is consistent with its
defined behavior for real world colors. The result is an
implementation of CIECAM02 that can be used as a drop in
replacement for traditional gamut mapping and clipped spaces
such as L*a*b*.

Introduction 
One of the uses that color appearance spaces may be put to,

is as a space for gamut mapping and clipping. Gamut mapping
can be regarded as a geometric process of mapping from one 3
dimensional space to another. While the nature of the mapping is
often guided by the gamut limits of the two devices involved, the
overall desired transformation range may be dictated by other
factors, such as the table ranges of the L*a*b* cube specified by
the ICC profile B2A table. Negative luminance values may arise
when mapping from spaces that have radically different surround
conditions or illuminant white points. Both these situation can
result in non real world color coordinates, that ideally should be
dealt with gracefully within the gamut mapping process.
Unfortunately while CIECAM02 is well behaved for real world
colors, is not well behaved in many regions outside this range.

These difficulties have lead to the suggestion of a few partial
solutions, the main one being pre-clipping color values in another
color space such as XYZ prior to conversion into CIECAM02
space [2][3]. Drawbacks of this are that such a two step
transformation is not easily reversible to form a round trip
solution, and clipping in some other color space would seem to
defeat much of the purpose of choosing CIECAM02 as a space to
do gamut mapping and clipping in. Other suggestions [4] tackle
some of the the round trip errors noticed in CIECAM02 over a
limited range (i.e. +ve XYZ).  

Additional shortcomings of CIECAM02 in regard to
spectrum locus colors falling outside the Hunt-Pointer-Estevez
(HPE) primary "triangle", and thereby falling afoul of the infinite
slope at zero of the non-linear response compression has been
addressed in [5] by a slight change to the HPE primaries. The
issues of whether the intended CIECAM02 behavior is actually
reasonable for some combinations of real world colors and
adapted state raised in [5], are outside the scope of any approach
that seeks to implement the CIECAM02 behavior in a manner

consistent with its defined behavior for colors on and within the
spectrum locus. 

Re-stating of the forward and reverse
transformations

It is advantageous for the purposes of examining the nature
of the numerical and range issues, as well as applying the
modifications described in the next section, to re-state the basic
CIECAM02 transformation from XYZ to Jab in a form slightly
different (but mathematically equivalent) to the equations used in
the original CIECAM02 paper [1]. 

Incoming XYZ values are transformed first by a 3x3 matrix
into a sharpened cone space for chromatic adaptation, then
transformed by another 3x3 matrix into the primary RGB cone
space in the same manner as the standard CIECAM02.

Each RGB value is then transformed by a non-linear function
into the Post-adapted cone response Ra

' ,Ga
' and Ba

' . The numerical
issues arising from this transformation will be dealt with latter in
this paper. For now they are ignored, and the more serious
underlying issues examined.

For the purposes of the discussion, the variables
e , nn , Nbb ,c , z are regarded as constants, although in practice

they depend on the viewing conditions. Some new variables are
also introduced (nn, ttA, ttd, S and J'), to represent components of
some  of the equations in [1].

From [1](23), nn is a modified version of n:

nn=1.64 0.29n0.73 (1)

Ra
' , Ga

' and Ba
' are then transformed into another 4 basis vectors:

a & b: Preliminary red-green & yellow-blue opponent
coordinates from [1](14) and [1](15):

a=Ra
' 12 /11 G a

' 1 /11 Ba
' (2)

b=1 / 9Ra
' 1 /9Ga

' 2 / 9 Ba
' (3)

ttA: Preliminary Achromatic response from [1](20):

ttA=2R a
' Ga

' 1/20Ba
' (4)

ttd: Preliminary saturation scaling denominator (part of [1](16)).

ttd =Ra
' Ga

' 21/20Ba
' (5)

The preliminary achromatic response ttA is transformed by a
non-linear function into the Lightness value (remainder of
[1](20)), and the lightness value J is broken up into a scale 1
value J', and the original scale 100 value J:
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A=ttA 0.305Nbb (6)

J '=
A
Aw


c z

(7)

J=J '⋅100 (8)

a, b are transformed into the final values by multiplying by a
scaling factor. The extraction of this as a separate variable ss is
the  primary aim of the re-arrangement of the original equations:

S=a 2b 2 (from [1](16)) (9)

ss=J ' nn e0.9

ttd 0.9 S 0.1 (10)

ac=a⋅ss (11)

bc=b⋅ss (12)

C=ac
2bc

2 (13)

The values J , ac andbc being the desired gamut mapping
space abbreviated as "Jab". The equivalent equation for inverting
the transformation needs to recover ss using just the output values
is:

ss=
J '1.0 /1.8nn1.0 /0.9e

ttd C1/ 9 (14)

Equation (14) depends not only on information that is
directly available when inverting the model (i.e. J , ac and bc ), but
on a fourth unrelated vector ttd that was computed in the forward
transform from the unscaled a & b. The use of a fourth vector ttd
seems to be a feature unique to the CIECAM series of appearance
models, and is at the root of many of its practical numerical
difficulties. To invert the model, ttd needs to be computed from
J ,ac and bc .

This can be done by noting that ttd can be computed from
weightings of  ttA, a & b:

ttd=w1⋅ttAw2⋅aw3⋅b (15)

w1=1.0 (16)

w2= 11.0/ 23.0 (17)

w3= 108.0/ 23.0 (18)

and that

ss= 1
ttd⋅ssp

(19)

where

ssp=
C 1/9

e J 1.0/ 1.8nn1.0 /0.9 (20)

a=ac⋅ss 1 (21)

b=bc⋅ss 1
(22)

substituting these into (15) gives:

ttd=w1⋅ttAttd⋅ssp w2⋅acw3⋅bc (23)

and collecting ttd to the left hand side gives

ttd = w1⋅ttA
1 ssp w2⋅acw2⋅bc

(24)

resulting in 

ss=
1 ssp w2⋅acw2⋅bc

ssp⋅w1⋅ttA
(25)

Once the scale factor ss is known, a & b can be computed,
leading on to the reconstruction of Ra

' ,G a
' and Ba

'
and ultimately

XYZ.

Numerical issues
Assuming the above equations are being used for the

conversion, the core numerical issues boil down to those affecting
the forward model scale factor ss (10). 

At its most difficult, J = 0, a = b = 0 (implying S = 0) and
ttd = 0 (It's assumed that if ttA = 0, then J would have to be
clipped to 0 to avoid taking a power of a negative number). So
for instance

ac=a J ' e0.9nn

ttd 0.9 S 0.1 (26)

becomes

ac=0 0 e0.9 nn

00.900.1 (27)

As well as the denominator being the sources of two
infinities, the zeros will cause infinities for the reverse
conversion, and the behavior of the variables as they approach
zero will have a dramatic effect on the sign and magnitude of the
scale factor. Note also that a appears both on the numerator and
disguised in S on the denominator.

Looking at the vectors ttd and ttA and their corresponding
zero value planes in Ra

' ,G a
' and Ba

' or ttA ,a and b space, they must
cross at a line. Near this crossing the scale factor undergoes large
changes over a small range of input. The situation with regard to
points lying near a2b2=0 is similar, although the geometry is
different, and of course all these effects interact near the zero
point.

For the reverse calculation, the necessity of computing ttd
from ac and bc , adds another influential constraint, as it
introduces another infinity if sspw2⋅acw2⋅bc=1 .

Numerical solutions  - Forward transform
We now go back to deal with the post-adaptation non-linearity
response skipped over in the preliminary discussion. It causes two
problems, one is that it asymptotes to a value of 400 in the
forward direction for large input values, meaning that there is no
reverse mapping for values over this. The original article
recommended implementing a symmetric response for negative
values, but this has the effect when used in the reverse direction
of greatly exaggerating small negative CAM values. To mitigate
these issues the curve is modified in a way that preserves it shape
over a real world range, and adds a tangential linear extension for
large positive values so that the range of positive values is not
limited, and for negative input values a straight line extension is
added that preserves negative values but expands them more than
the positive characteristic on conversion to the CAM space, so
that the values are compressed more on conversion from the CAM
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back to XYZ, helping to minimize shifts in resulting color for
CAM values near or just below zero.

 
Lower extension:

xl lim=0.005×100 (28)

xlval=
400.0 FL xl lim/ 1000.42

27.13FL xl lim /1000.420.1 (29)

xlslope=xlval 0.1/xl lim (30)

Upper extension:

xulim=100000×100 (31)

xuval=
400.0 FL xulim /1000.42

27.13FL xulim/1000.420.1 (32)

xuslope=
∂

∂FL  400.0 FL R' /1000.42

27.13FL R' /1000.42at xulim (33)

Non linearity equation:

if R'xl lim

Ra
' =xl slope R'0.1

else if R'xu lim

Ra
' =xuvalxuslope R

' xulim
else

(34)

Ra
' = 400.0 FL R' /1000.42

27.13FL R' /1000.42
0.1 (35)

Equation (9) is modified to create a version of S restricted to
be a minimum of a small positive value, to prevent it causing a
divide by zero in the computation of ss . The exact minimum
value isn't critical since the a ,b numerator dominates the limit as
neutral colors are approached:

S r=max {a 2b2 ,1×10 12} (36)

Equation (7) is modified to avoid taking the power of a
negative number, and to switch from the power curve applied to A
in computing J ' , to straight line transfer curve that minimizes
exaggerating the imaginary "blacker than black" colors: 

J lim
' =0.005 (37)

Alim=Aw J lim
' 1.0 /c z  (38)

if AA lim

J '=A⋅J lim
' /Alim

else
J '=A/ Aw

c z

(39)

A constrained positive non-zero J ' is also computed for use in
the scaling equation components:

J c lim
' =0.005 (40)

if A≤0
J c

' =J c lim
'

else
J c

' =max { A/ Aw
c z , J c lim

' }

(41)

The scaling factor equation (10) is divided into three components:

k1=
nn 1.0 /0.9 e J c

' 1.0 /1.8

Sr
1.0 / 9.0 (42)

k2=J c
' 1/C Z  Aw

Nbb
0.305 (43)

k3=w2 aw3b (44)

The components combining thus:

ss1 /0.9= k1
k2k3

(45)

The use of S r and J c
'

in computing k1 and k2 ensures that
the scale factor will not be zero, negative or infinity, due to them.
To ensure that it does not go negative or to infinity due to k3, the
ratio of k3 to k2 is constrained :

ssllim=0.55
if k3k2⋅ssllim

k3= k2⋅ssllim

(46)

While this ensures good behavior in the forward
transformation, the resulting values can still trigger problems in
the reverse transformation, so an additional constraint needs to be
applied. A preliminary scaling ss p factor is computed using
equation (45) to see if this is the case, and if so the k3 value
adjusted. (see also (53) and (54)).

ssulim=0.9993

if ss p⋅k3
ssulim⋅k1

ss p
1.0 /9.0

ss=k1⋅1 ssulim
k2 

0.9

else
ss=ss p

(47)

The final J ,ac and bc values are computed using equations
(8), (11) and (12).
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Reverse transform
For the reverse transform, a similar, complementary

procedure is used. First C is computed using equation (13), and
then a constrained version that has a minimum of a small positive
value is computed. The exact minimum value isn't critical since
a ,b numerator dominates the limit as neutral colors are

approached.

Cr=max{C ,1×10 12} (48)

The achromatic response A is computed from J ' using the
inverse of equation (39). The preliminary achromatic response
ttA is then computed using the inverse of equation (6). The

constrained positive non-zero J c
' is computed using equation (41).

The reverse scaling factor equation (25) is divided in a very
similar fashion to the forward one, with one identical, and two
similar components:

k1'=
nn1.0 /0.9 e J c

' 1.0/ 1.8

Cr
1.0 /9.0 (49)

k2=J c
' 1/C Z  Aw

Nbb
0.305 (50)

k3'=w2 acw3 bc (51)

The components combining to form the scale factor:

ss=
k1' k3' 

k2
(52)

Note that:

k1'=k1 / ss1.0/9.0 (53)

k3'=k3⋅ss (54)

The use of J c
'

and Cr
'

in computing k1' and k2 ensures that
the scale factor will not be zero, negative or infinity, due to them.
To ensure that ss does not go negative or its inverse to infinity
due to k3' , the ratio of k3' to k1 is constrained :

if k3'k1'⋅ssulim

k3'=k1'⋅ssulim

(55)

While this ensures good behavior in the reverse
transformation, the resulting values can still trigger problems in
the forward transformation, so an additional constraint needs to
be applied. A preliminary scaling ss

pr factor is computed using
equation (52) to see if this is the case:

if k3'ss pr⋅k2⋅ssllim

ss=k1'

k2⋅1.0 ssllim 
else

ss=ss pr

(56)

With ss recovered, the inverses of equations (11) and (12)
can be used to recover a and b from ac and bc , and then
Ra

' ,G a
' and Ba

'
are easily computed from ttA ,a and b by inverting

(2), (3) and (4).

The particular limit values chosen of 0.55 and 0.9993 were
primarily arrived at through a process of numerical simulation,
and strive to minimize the extremes of the scale factor while not
impinging on the result for colors that lie on or inside the
spectrum locus. 

Verification
Several numerical verifications were carried out. One was to

compare the results for colors on and within the spectrum locus to
the results from the transformation without the range limitation
modifications, verifying that the results are unchanged within the
numerical precision of the implementation. The other
verifications are round trips:

Regularly sampling an XYZ cube in the range -100 to 120
for each coordinate, converting to Jab and then back to XYZ, with
a worst case error of  7e-7.

Regularly sampling a Jab cube in the range J -50 to 115, a,b
range -128 to +128, converting to XYZ and then back to Jab, with
a worst case error of  4e-6.

The following two illustrations show a cylindrical grid in
L*a*b* D50 color space of radius 50 and L* ranging from -100 to
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+100, transformed to Jab space and plotted in 3D. The axes
shown are from a,b -128 to +128, and J 0 to 100: 

Conclusion
The approach described here provides a robust solution for

the numerical issues inherent in the CIECAM02 transform, at the
cost of some extra complexity. It seems to be quite difficult to
evaluate the geometry of color spaces in imaginary color regions
and the effect this has on gamut mapping and clipping, because it
does not seem possible to evaluate the subjective accuracy of such
mappings through any practical experiment. It's possible to
compare the behavior to some other color spaces (e.g. L*a*b*
space) that are capable of representing imaginary colors, but since
there is no basis to regard one or the other as canonical, it is hard
to draw conclusions. Imaginary colors can inherently contain
contradictions such as zero or negative luminance levels
combined with very highly saturated colors, that make broad

arguments about what's reasonable, confounding as well. Given
these difficulties, it is probable that the particular way the scale
factor has been broken down, and the choice of limiting values
could well be improved in regard to how consistent end sensible
the resulting gamut mapping space is. In addition, the nature of
the CIECAM02 transformation (particularly the influence of (5))
causes what may seem to be surprising behavior compared to a
space such as L*a*b*, since some Jab colors with quite negative J
values transform into XYZ values that have very positive Y
values, and hence will not be black. Whether this is of any
consequence in applying gamut mapping to real world color
transformations, and whether this behavior could be modified
without deviating from CIECAM02 behavior within the real
world color space is a topic for further research.

Perhaps the analysis in the early part of this paper of the
existing CIECAM02 transformation in terms of the 4 basic
vectors a, b, ttA & ttd and the scaling factor ss may inspire some
simplification in future CAM's.

Source Code
Source code for a CIECAM02 implementation that includes

the modifications described in this paper is available under the
GNU license as part of the ArgyllCMS package, from
http://www.argyllcms.com, in the file xicc/cam02.c
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Illustration 2: D50 L*a*b* cylindrical grid
plotted in modified CIECAM02 Jab space.

Illustration 1: D50 L*a*b* cylindrical grid
plotted in original CIECAM02 Jab space.
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