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Abstract
Memory colours refer to the colour of specific image classes

that have the essential attribute of being perceived in a consistent
manner by human observers. In colour correction -or rendering-
tasks, this consistency implies that they have to be faithfully re-
produced; their importance, in that respect, is greater than other
regions in an image.

Before these regions can be properly addressed, one must in
general detect them. There are various schemes and attributes to
do so, but the preferred method remains to segment the images
into meaningful regions, a task for which many algorithms ex-
ist. Memory colours’ regions are not, however, similar in their
attributes. Significant variations in shape, size, and texture do ex-
ist. As such, it is unclear whether a single algorithm is the most
adapted for all of these classes.

In this work, we concern ourselves with three memory
colours: blue sky, green vegetation, and skin tones. Using a large
database of real-world images, we (randomly) select and man-
ually segment 900 images that contain one of the three memory
colours. The same images are then automatically segmented with
four classical algorithms. Using class-specific Eigenregions, we
are able to provide insights into the underlying structures of the
considered classes and class-specific features that can be used to
improve classification’s accuracy. Finally, we propose a distance
measure that effectively results in determining how well is an al-
gorithm is adapted to segment a given class.

Introduction
All image regions are not created equal; indeed, for digital

photography some classes have a much greater importance than
others. Some of the most important classes are the so-called mem-
ory colours: blue sky, green vegetation and skin tones [10]. It
has been shown that human observers locate these classes in very
specific areas of the colour gamut [2, 20]. Thus, many colour
rendering and correction algorithms specifically try to map these
colours to the correct values, such that the resulting images can be
rendered. As a result, detecting these regions has been (and still
is) a very active area of research.

Detection algorithms generally rely on many different fea-
tures to classify memory colours: approaches include the use of
shape, size, position, colour, and texture [4, 21, 13, 3]. Prior to be-
ing detected, however, images have to be segmented into mean-
ingful regions. How meaningful a region is depends on the in-
tended application of the segmentation, but most segmentation
evaluation methods are predicated on the idea(l) that all regions
are of equal importance. As such, it is in their entirety that the
resulting segmentations are compared to manually segmented im-
ages [19].

This work addresses the problem of class-specific segmenta-

tion evaluation, as well as the localisation of memory colour re-
gions within natural images. Our framework builds on the eigen-
regions proposed by Fredembach et al. [11], which are principal
component analysis (PCA) based geometrical features that en-
compass shape, size, and position information of regions. The
central idea is to calculate class-specific eigenregions, i.e., obtain-
ing different geometrical descriptors for each class. To be used in
such a manner, the considered classes have to be reasonably lo-
calised across images, i.e., they should usually be found in similar
position within images. The classes we consider here: blue sky,
green vegetation, and skin tones generally fulfil, due to physics or
photographic composition, this localisation criterion.

An objective ground truth for our experiments is obtained
by manually segmenting 900 images, 300 per class. These accu-
rate binary segmentation maps are used to calculate class-specific
eigenregions that are subsequently compared to the ones resulting
from automatic segmentation of the same images. Four segmen-
tation algorithms that employ very different information are com-
pared: Meanshift (density estimation process) [5], Felzenswalb
and Huttenlocher (minimum spanning trees) [8], k-means (Eu-
clidian distances between clusters) [1], and edgeflow (Gabor filter
banks) [14].

The comparison is based on the idea that if human segmenta-
tion is available for a given class, then its N eigenregions provide
a reference basis in N-dimension. An algorithm-based segmen-
tation of the same data will, however, provide a different basis in
N-dimension. Measuring the distance between these bases effec-
tively quantifies the performance of the algorithm.

The results show a strong class-dependency in both the ac-
curacy of segmentation and shape of the eigenregions. In fact, the
proposed framework can be used to quantify, for a given class, the
distance between any two algorithms and the influence of the al-
gorithm’s parameters. In addition, it yields class-specific features
that can be used for classification tasks.

Background
Segmentation-wise assessment of class-specific data is

scarce. In a more global setting, however, assessing the per-
formance of automatic segmentation is not a new concern and
several approaches have been presented that yield a measure of
“closeness” or “agreement” with human segmentation. Martin
et al. [17] first proposed the use of region consistency over a
database of human-segmented images [16] to evaluate the perfor-
mance of automatic segmentation algorithms. These measures of
segmentation consistency turned out to be biased toward over- or
under-segmentation, so in [15] the use of precision and recall on
region boundaries was suggested instead. A benchmark of sev-
eral segmentation algorithms based on precision and recall was
published in [6]. A different, region-based consistency measure
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was presented by Ge et al. in [12]. Their measure also depends
on the overlap between automatic and human segmentations, but
it was computed on images that contained only two regions: a
salient object and its background. Overlap was measured after
deciding (based on the human segmentation) which subset of re-
gions in the automatic segmentation best matched any given hu-
man region. More recently, Unnikrishnan et al. [19] presented
a benchmark based on the Normalized Probabilistic Rand index.
This measure compares segmentations through a soft weighting
of pixel pairs that depends on the variability of the ground truth
data. Other measures of segmentation consistency have been pro-
posed in [9], [18], and [7]. A concise survey of these measures is
provided in [19].

Despite their potential usefulness, each of the above methods
for evaluation has its own limitations. First of all, they are global
methods designed for entire image agreement, we are here con-
cerned about specific classes. Boundary based methods will give
good scores to under-segmented images in which two or more
distinct (and possibly large) image regions are connected through
narrow “leaks”. Since most of the boundary is recovered, bound-
ary matching may falsely indicate that the segmentation is accu-
rate. Methods based on overlap such as Ge et al. can be biased
toward high scores by over-segmenting. In addition, this method
assumes some form of expert is available to decide which of the
over-segmented regions should be merged together to match hu-
man segmentation. The benchmark by Unnikrishnan et al. [19]
provides interesting insights about the performance of segmenta-
tion methods on natural images, however, the question remains of
whether particular algorithms are better for specific segmentation
tasks, which is one of the fundamental problems addressed in this
paper.

Eigenregions
Eigenregions were first proposed in [11] as PCA-based fea-

tures for image classification. They were obtained by first seg-
menting a great number of images into regions whose “coverage”
was assessed. Working on region coverage allows eigenregions to
encompass geometrical attributes, such as shape, size, and po-
sition. For the analysis to be tractable, the segmentations are
performed on reduced-size images, which is not a concern since
downsampling does not alter a region’s location or coverage. An
illustration of this downsampling procedure is shown in Fig. 1.

Figure 1. Left: an image from our database with a blue sky region; middle:

a binary representation of the sky region’s coverage in the original image

size; right: the downsampling of the binary image to 6× 8 pixels which is

used to perform PCA. The grayscale values represent the relative coverage

of the region at a given location: from 0% (black) to 100% (white)

Let I be an input image of size n×m, R be a region of I and
p a pixel in the image. For every region R, we have that:

∀p ∈ I : I(p) = 1 if p ∈ R; 0 otherwise (1)

Let (i, j) be the index of a pixel in the reduced-size image Id
and let d1 = n

nd
and d2 = m

md
be the downsampling factors along

the rows and columns of I, respectively. I and Id are related by:

Id(i, j) =
1

d1d2

d1

∑
k=1

d2

∑
l=1

I(d1(i−1)+ k,d2( j−1)+ l) (2)

The pixel (i, j) of Id is assigned the value of the proportion of
white pixels contained within the corresponding d1 × d2 sized
block in the original binary image.

These downsampled images are the input to the PCA al-
gorithm. In effect, each one is a N-dimension feature vector,
where N = ndmd . If there are, for a given class, M regions in
the database, then X is the input data matrix (N ×M) and we can
write:

X̄ = μ(X) : the mean of X (3)

Y = X − X̄ (4)

C = Y Y T (5)

C can then be expressed, using singular value decomposition, as:
C =V Λ V T , where V is the eigenvector matrix and Λ is the diago-
nal eigenvalue matrix of C. The Principal Component Analysis, in
fact a translation and a rotation in the N-D space, finds an orthog-
onal basis that is optimal in a least square sense (i.e., it minimises
the data projection’s distance onto the new basis). Moreover, the
eigenvector that corresponds to the largest eigenvalue is in the di-
rection of the largest variance [22].

The two important elements are the eigenvector and eigen-
values matrices: V and Λ. V defines the new basis vectors, i.e.,
their orientation, while Λ expresses the relative importance of
each basis vector in reconstructing the data. The key insight is
that if we are provided with a reference basis, we can calculate its
similarity (i.e., distance) to any other basis in a space of identical
dimension. In our framework, the reference basis is the eigenre-
gions obtained by human segmentation, while the candidate bases
are the eigenregions obtained via automatic segmentation algo-
rithms.

We first note that if two vectors have many common com-
ponents (that is, two regions’ coverage is almost identical), the
angle they form is going to be small, i.e., the points they define
will be close in space. This property is important since it guaran-
tees that regions that are roughly similar will be located close to
one another. Conversely, over- and under-segmented regions will
be located much further apart since the number of components
they have in common with an exactly segmented region is going
to be small.

Let V 1
i be the ith eigenvector of a reference segmentation

and V 2
i be the ith eigenvector of a candidate segmentation. Fur-

thermore, let λ 1
i and λ 2

i be the eigenvalues associated with V 1
i

and V 2
i , respectively. We can express the angle between the two

vectors as:

θ(V 1
i ,V 2

i ) = cos−1(< V 1
i ,V 2

i >) (6)

that is, the inverse cosine of the vectors’ inner product. Since we
are working with PCA, orientation matters but direction does not,
therefore we can further write:

θ(V 1
i ,V 2

i ) = min(θ(V 1
i ,V 2

i ),180−θ(V 1
i ,V 2

i )) (7)
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where θ is expressed in degrees.
The distance between a reference segmentation method V 1

and a candidate one V 2 can then be defined as the weighted sum
of each angle, i.e.,

Δ(V 1,V 2) = ∑
i

λ 1
i θ(V 1

i ,V 2
i ) (8)

The eigenvalues from the reference method are used as weights
because they express the importance of a given orientation in
the human segmentation (the one an algorithm aims to be close
to), and thus the importance of committing an error there. This
weighting will have the effect of “denoising” the results, only pre-
serving errors that are relevant to the reference segmentation.

Given a reference basis, the proposed distance measure,
Equation (8), is effectively class, algorithm, and parameter in-
dependent since it only measures the dissimilarity of two bases
in N-D space. It can thus be used to compare the accuracy of
different segmentation algorithms using different parameters, and
it can also indicate the relative “difficulty” of segmenting a class
compared to others, as shown in the next section.

In [11] , it was proposed that eigenregions were indepen-
dent of the segmentation algorithm, and so were the underlying
features. While we do not contest this, we point out that this argu-
ment was made in light of general regions, i.e., all regions were
considered equal and were used. We argue, however, that most
image classes have a much lower underlying dimensionality than
general regions. As a result, their appearance in PCA space will
vary significantly and, consequentially, so will the outcomes of
different segmentation methods.

Experimental Setup
The experimental protocol proceeds as follows: first, test im-

ages are selected from a database; these images are then seg-
mented by hand according to chosen classes. In a third step,
the images are segmented using several automatic algorithms and
their output is assessed using a simple matching algorithm. Fi-
nally, once the data is collected, eigenregions are selected and
distances measured.

The database we used consists of 55’000 real-world images.
They come in various original formats and quality, and depict (al-
most) every possible scene. Out of these 55’000 images, 9’000
have been manually annotated by photographic experts as con-
taining either one of the memory colours: blue sky, green vegeta-
tion and skin tones. We randomly selected 900 images (300 per
class) out of these 9’000 for our experiment. Since this database
was used to perform quick calculations on images, image size was
reduced to 64×48 pixels. This downsampling does not, however,
alter the location of regions within an image. Examples of images
in this database are shown in Fig. 2.

These images were segmented by hand. For every image, the
user is asked to segment only the relevant class, which leads to a
binary segmentation of the image (see Fig. 3 for an illustration).

The 900 images are also segmented using four different al-
gorithms: k-means (with k=8), edgeflow (with σ = 8), FH (with
k=50) and meanshift (with spatial=6 and range=15). For the first
two algorithms, the parameters were chosen to match the ones
from [11] , while the latter two were chosen empirically by look-
ing at the average size of regions and number of regions per im-

Figure 2. Example of images present in the database: blue-sky labelled

(1st row), vegetation labelled (2nd row) and skin-tones labelled (3rd row),

note the variety of content.

Figure 3. Human binary segmentations examples of the three considered

classes. The original images containing sky, vegetation and skin (top row)

and their segmentation (bottom row).

age. All 900 images were segmented using the exact same param-
eters, which we have not attempted to optimise.

To assess the segmentation results, we look at every region
of the segmented image. If a region has a non-null intersection
with the human segmentation, i.e., if a segmented region contains
a given class, this regions is deemed a positive match. A binary
map is thus created where the region will appear in white and
the rest of the image in black (akin to the ones shown in Fig. 1
and 3). After all the binary segmentations are obtained, they are
reduced to a 6× 8 image, according to Eqns. (1) and (2). From
these output images, 15 sets of eigenregions are calculated: one
for each algorithm-class pair.

Results
The results are reported in three categories. First, we assess

the “localisability” of the memory colour classes. Indeed, if a
class is not localised at all within images, a PCA-based frame-
work will be of little help. The reconstruction rates, however, in-
dicate that memory colour classes are in fact well localised. In a
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second step, we show the class-specific eigenregions for the three
considered classes obtained by manual segmentation and the four
segmentation algorithms, and discuss these results in terms of im-
age content and segmentation behaviour. Finally, we use our pro-
posed distance measure to numerically quantify the distance of
each of the algorithms to our ideal, manually segmented, images.
The resulting distance agrees with both the shape of class-specific
eigenregions, as well as with the opinion of the observers who
looked at the human and automatic segmentations.

Localised classes
Figure 4 shows how localised our three considered classes

are. For blue sky and green vegetation, 5 eigenregions (i.e., 10%
of the available eigenvalues) suffice to explain 85% of the vari-
ance. Considering the prevalence of these two classes in land-
scape images, these results are unsurprising. Conversely, skin
tones are not as localised. Since skin tones encompass all of face,
hands, arms, body, etc., they are expected to be inherently less
localised than sky or grass.

Figure 4. Reconstruction rates for human segmentation. Blue sky and

green vegetation are fairly well localised, with 85% of the variance explained

by 10% of the eigenregions, while the skin tones reconstruction rate is lower.

Reconstruction rates are important because they indicate
whether it is judicious to use geometrical features for the detection
of a given class. On the other hand, they do not provide a mea-
sure of accuracy. A segmentation algorithm that would determin-
istically partition images into two regions (say top and bottom)
would have a very high reconstruction rate. It would, however, be
a very inaccurate segmenter.

Class-specific eigenregions
After eigenvalues, we analyse the eigenregions given by the

algorithms on our three classes. The first five eigenregions for
each class and each algorithm are shown in Fig. 5-7, where their
values have been normalised between 1 (white) and -1 (black) for
better visualisation. These eigenregions provide important clues
regarding the performance of a given segmentation algorithm over
a class. First, they allow a visual comparison of class-localisation
and differences across algorithms. Then, as pointed out in [11] ,

they can be used as features in image classification; the rationale is
that our particular eigenregions should actually prove more useful
than the general eigenregions since ours are readily tailored to a
specific class. Classification in itself was not performed here, as
it is outside the scope of this paper.

From the results, we observe that sky and vegetation eigen-
regions appear more coherent than the skin ones. This correlates
well with the reconstruction curves shown in Fig. 4 and is eas-
ily explained by the fact that sky and vegetation are mostly found
in landscape-type images that have a top/down decomposition (or
left/right for pictures taken in a portrait orientation). These re-
gions are therefore located in a smaller part of the 48-D space and
thus are easier to cluster via PCA.

Figure 5. The first five eigenregions for the blue sky class. From top to

bottom: Human segmentation, k-means, edgeflow, FH and meanshift.

The blue sky results, Fig. 5, show that while all algorithms
correctly find the first eigenregions, k-means and edgeflow results
appear, in general, much closer to the human segmentation than
either FH or meanshift when looking at eigenregions 2-5. In gen-
eral, however, the eigenregions correspond to our expectations,
with clear top/down decomposition for the first one, and some
variation in the subsequent ones that originate from images where
the sky is partly occluded (trees, buildings, people).

Vegetation eigenregions, Fig. 6, start similarly with a
landscape-type decomposition (top/down or left/right, depending
on the camera’s orientation), but this behaviour changes after the
first three to indicate the presence of centred objects, e.g., trees
or plants in indoor scenes. These latter positions are harder to
accurately segment and few algorithms are able to correctly dis-
tinguish them. Both meanshift and edgeflow appear to be closer
to the ground truth, but their results are still somewhat skewed.
K-means performs well on the landscape-type images but is con-
founded by more complex scenes, while FH misses out one of the
first eigenregion.

Finally, skin tones eigenregions, Fig. 7, exhibit various type
of centre-surround interactions, i.e., the object of interest is small
and located centrally within an image. Since we look for skin
tones in general, as opposed to faces only, we expect the results
to be somewhat noisy because of the greater location possibili-
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Figure 6. The first five eigenregions for the green vegetation class. From

top to bottom: Human segmentation, k-means, edgeflow, FH and meanshift.

ties. The eigenregions express two aspects well: the position and
the scale ambiguity. Indeed, while most of them are of centre-
surround types, the size and the location of the “interest region”
varies across eigenregions. Looking at the four algorithms, we
see that meanshift is probably the closest to human segmentation
while k-means is not too far behind. Edgeflow and FH appear to
perform worse but for different reasons. In fact, their behaviour is
complementary with FH not detecting the larger regions (eigenre-
gion 1) and edgeflow wrongly detecting the smaller ones.

Looking at these results, we can draw the following con-
clusions: class-specific eigenregions have very distinct shapes
that express the content of the images well; they are algorithm-
dependent, and the closest algorithm to human segmentation does
not appear to always be the same. Finally, the shape of the eigen-
regions correlates well with the reconstruction rates observed, i.e.,
the simpler the shape of the eigenregion, the better localised the
underlying class is.

Which algorithm for which class?
The eigenregions themselves give useful information, still,

assessing distance in a 48-D space, even when provided with vi-
sual cues, is difficult. Using our proposed measure (8), we mea-
sure the distance between the four algorithms and human segmen-
tation for each class. The results, reported in Table 1, confirm
what was visually inferred in the previous section. Looking at the
distances as a whole, one sees that blue sky is the best segmented
region (smallest distance), followed by vegetation and skin tones.
This is expected given the much greater variety of position, size,
shape, and colour of skin tones when compared to blue sky or
vegetation, thus making them harder to segment. Also, we see
that while on average meanshift performs better than the other al-
gorithms, it is not necessarily the best performing one for every
class.

Taking the results separately, one observes that k-means and
edgeflow are equivalent in their sky segmentation, meanshift and
edgeflow are better for vegetation, and meanshift is best for skin
tones; these results correlate well with the visual assessment done

Figure 7. The first five eigenregions for the skin tones class. From top to

bottom: Human segmentation, k-means, edgeflow, FH and meanshift.

Blue Sky Green Vegetation Skin Tones
k-means 24.3 34.65 44.15
edgeflow 23.6 28.53 56

FH 40.62 73.2 70.8
meanshift 36.12 27.5 33.6

Distance between a given algorithm and human segmentation
(smaller is better). The results are highly class-dependent and
there is not a best algorithm overall.

in the previous section. For all classes, FH is rated as the worst
performing algorithm. This comparison brings several questions
that have to be answered: why is k-means so good, why is mean-
shift worse in the simplest class, and why does FH perform so
badly?

K-means’ performance can be explained by the choice of
classes. Indeed, memory colours are classes that are well located
in colour space [2], so a cluster including them will usually be
found. As a result, k-means is expected to be accurate. Its per-
formance for vegetation and skin is, however, lower since these
classes’ luminance and colour can be altered by lighting effects
(such as shading), thus creating errors.

Edgeflow includes both colour and texture information, and
is therefore expected to yield a good segmentation of our three
classes. However, its accuracy for skin tones is not always high.
Looking at both the distance and the eigenregions themselves, one
sees that its regions are larger than they should be. This is, most
likely, the consequence of the choice of σ that influences the scale
at which variations are sought. Additionally, artefacts such as
glasses, hats, occlusions or sometimes hair can induce a wrong
segmentation.

Perhaps surprisingly, FH is the worst rated algorithm in our
test, and this for all classes. The reason here is that the choice of
parameters has given rise to chronic over-segmentation. While the
number of regions in the image is not overly high (between 14 and
28 regions per image), it was very sensitive to noise, vignetting,
and small level texture alterations. This is confirmed by looking
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at the number of regions found for each class. For sky, vegetation
and skin, FH has, on average, 3.2, 5.2, and 2.6 regions per image,
respectively, compared to meanshift’s 1.2, 2.3 and 1.5, indicating
a strong over-segmentation issue. We have found no significant
correlation between number of regions and performance for other
algorithms than FH, whose over-segmentation was significant.

Finally, meanshift, the best overall algorithm, exhibits a
rather unique behaviour: its worst class is sky, which is the op-
posite of every other algorithm. Again, this can be explained by
the parameters used. While they were well-suited to vegetation
and skin, they tend to under-segment sky, especially in the pres-
ence of softer gradients, such as clouds or haze.

Note that we do not advocate here that one algorithm is better
than the others. Rather, the results show that a given algorithm (or
a given choice of parameters) appears to be measurably better for
segmenting a specific class, not all classes in general. It is there-
fore well possible that meanshift, with other parameters, would
have a more accurate sky segmentation. However, this could be
detrimental to its segmenting of skin or vegetation. A direct con-
sequence of our results is that the proposed distance measure can
not only be used to select one algorithm, but also to optimise a
given algorithm’s parameters in order to segment a specific class.

Conclusions/Future work
We have presented an eigenregion-based framework that

evaluates class-specific image information. Using human seg-
mentation and assessment of automatic segmentation algorithms,
we were able to show, numerically, that naturally occurring
classes in images were neither evenly distributed nor similarly
localised. We argued that class-specific eigenregions can prove
more accurate than general eigenregions in classification, since
they better explain the observed behaviour of the considered
classes. The classes we considered here were sky, vegetation, and
skin tones memory colours, all of them being of critical impor-
tance for tasks such as colour rendering or correction.

Moreover, we have proposed a distance measure in N-D
space that takes into account the relative weight of a given eigen-
region. Using that distance, we showed that different algorithms
segment different image classes with varying accuracy compared
to human segmentation. Importantly, the algorithms’ perfor-
mance is strongly class-dependent, there is no single best algo-
rithm. Future work involves using our distance measure to obtain
optimal parameters for each segmentation algorithms, thus having
specific settings for specific classes.
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