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Abstract 
When evaluating image contrast, the present work found that 

total impression formed from global and local appearances played 
an important role. Vividness, clearness and colorfulness were 
addressed by observers on account of the global appearance 
generated from an entire image. For the local appearance created 
from particular areas in an image, four factors were considered: 
reproduction of detail, distinguishability of objects, either or both 
lightness- and colorfulness-difference, and colorfulness of objects. 
To determine changes in perceived contrast arising from variations 
in the local and global appearances, pixel-based color differences 
at different image resolutions were selected as image contrast 
correlate. It was demonstrated that this approach was reasonable 
in the prediction of perceived contrast changes for images 
rendered in lightness, chroma or sharpness domain.   

Introduction  
In the display industry, contrast is generally specified in terms 

of the contrast ratio computed using the Michelson contrast, Eq. 
(1), and checker-boards composed of alternating black and white 
areas [1]. 

)(/)( minmaxminmax LLLLC +−=  (1)  

where Lmax and Lmin are the maximum and minimum luminance 
values for a display considered. 
The computed contrast ratio, e.g. 5,000 : 1, indicates the 
luminance difference between two points of extreme brightness 
and darkness in an image seen on a display. Image contrast is 
likely, in retail outlets, to be perceived as different for two 
representations of the same image on two similar displays, 
although the two displays have the same computed contrast-ratio. 
This indicates that the contrast ratio may not be representative of 
the perceived image contrast that is experienced while watching 
e.g. a broadcast baseball game. Further, display customers are 
recommended to experience image contrast using their own eyes, 
rather than to be dependent on specifications provided by display 
producers [2]. If this is the current situation, it is required to 
establish the visual factors influencing the perceptual responses to 
image contrast. The present work investigated such factors.  

Images are composed of spatial components of broadband-
frequency. Human contrast sensitivity to sinusoidal modulations in 
luminance is highly dependent on spatial frequency [3]. Peli [4] 
took this nature into account for modeling image contrast and 
proposed the concept of local band-limited contrast. Bex [5] 
measured the contribution of different spatial frequencies to the 
supra-threshold contrast of natural images, resulting in 0.5 – 4 cpd 
of spatial frequency range to be most significant in the perception 
of image contrast.  

Images are also composed of a few or many elements 
representing different objects and components of scenes. For 
example, an achromatic image containing people against a building 
is viewed on a display. To recognize the main elements such as the 
people or to see detail of people’s hair, relative luminance 
variations in the hair or between the people and building are 
necessary. Further, the perception of image contrast arises from 
these relative luminance variations. Considering this aspect, image 
contrast was determined by calculating the standard-deviation of 
the luminance values of all pixels in an image [6]. Matković [7] 
used the average of luminance differences between neighboring 
pixels, instead of standard-deviation, to define local image 
contrast. The local contrasts computed at various resolutions were 
then combined with different weights, in order to obtain a measure 
of the global image contrast for the image.  

All above studies [4-7] used achromatic images as target 
stimuli to propose methods for computing image contrast, and to 
evaluate the effect of different spatial frequencies on image 
contrast. However, images normally seen on displays usually 
contain chromatic contents. Calabria and Fairchild [8] found 
significant perceived image-contrast differences between full color 
images and their corresponding achromatic versions, suggesting 
that the previously proposed image-contrast models need to be 
extended to include information regarding their chromatic 
contents. Thus, they developed models using image statistics 
associated with image lightness, chroma, and sharpness 
information [9]. 

The present work attempted to establish important criteria that 
influence the perception of contrast when observers assessed the 
contrast of a series of complex color images reproduced on a large 
display. An image contrast model was then developed using 
parameters that were responsible for contrast variations caused by 
changes in the key criteria revealed in the results of the 
psychophysical experiment. 

Psychophysical Experimental Setting  
Twelve observers were asked to assess image contrast using a 

9-point qualitative category scale. Eight color images (five natural 
scenes, two portraits and one fruits) were manipulated to produce 
variations by separately rendering the lightness, chroma and 
sharpness. These manipulated images were used as the stimuli in 
the assessment and were displayed on a 42-inch Samsung Plasma 
Display Panel. RGB values of each pixel in a test image were 
converted to XYZ tristimulus values using a 3D-LUT and 
tetrahedral interpolation. The XYZ values were again converted to 
lightness (J) and chroma (C) values using the CIECAM02 color 
appearance model [10]. Eleven manipulations in the J channel 
were performed: four linear, three sigmoid, three inverse-sigmoid 
functions and the local color correction method [11]. Chromatic 
transfer functions used included four linear functions, one sigmoid 
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and one inverse-sigmoid functions. A sharpness change was 
created by manipulating J in its frequency domain. Five methods 
were applied to increase sharpness: four high-frequency emphasis 
filters and enhancing frequency ranges where human contrast 
sensitivities are highest. The resulting 22 manipulated images may 
look darker than, sharper than, or have different contrast or 
colorfulness to the original image. A total of 2208 observations 
was made: 8 images × 23 manipulations including the original 
image × 12 observers. 

Subjective Rules on the Perception of Image 
Contrast 

The 12 observers were told to assess the contrast of 
manipulated versions of the eight original images. Afterwards, 
they were asked what kind of rules they had used in making their 
assessments and which parts in each of the eight test images they 
paid closest attention to. Observers looked at the test images not 
just globally or locally but together, i.e. the total impression 
formed from several image-appearance attributes played an 
important role in the perception of image contrast. If appearances 
formed from particular areas in the images were considered in the 
assessment of image contrast, these were named local appearance; 
whereas if they were formed from the whole image, these were 
named global appearance. The rules applied by all the observers 
can be summarized as follows, separated into local and global 
appearances.  
 

Local Appearance  

(1) Reproduction of detail (shadow-detail and object-detail). 
(2) Distinguishability of objects (how well some objects in an 

image can be distinguished). 
(3) Considering either lightness-difference (dark parts look darker 

and light parts look lighter) or colorfulness-difference (low-
chroma parts look less chromatic and high-chroma parts look 
more chromatic, or difference between two different objects), 
or considering both of these.  

(4) Colorfulness of objects. 

Global Appearance  

The following three terms were often mentioned by observers to 
express their own rules applied to judge image contrast based on 
the impression formed from an entire image.   
(1) Vividness  
(2) Clearness  
(3) Colorfulness  

Amongst the eight test images, six were used for developing 
the image-contrast model, and two images, ‘Sheep’ and ‘Park’, 
were used for evaluating the model performance in the following 
section. Figure 1 shows these testing and training images. Table 1 
describes the particular areas in ‘Harbor’, ‘Fruits’ and ‘Kids’ 
images at which the observers looked using one of the above local 
appearances (1) – (4), when they assessed image contrast. 

    Sheep                                          Park                                          Pier                                     Seashore                               Adults 

    Harbor                                      Fruits                                        Kids                                 

Figure 1. Two testing images (‘Sheep’ and ‘Park’) and six 
training images (the other six images).  

Table 1: Particular areas in ‘Harbor’, ‘Fruits’, and ‘Kids’ images to which the observers gave attention in the assessment of 
image contrast. These areas are described according to (1) – (4) local appearances. 

   Harbor Fruits Kids 

(1) 
Shadow-detail in dark areas in the 
sea. Detail in the red roof. 

Shadow-detail of the bottom areas 
in the basket located in the top left. 
Fruit-detail, especially grape. 

Hair-detail of the kids. 

(2) 
Window frames in the yellow 
house. Rigging in the boats.  

Individual fruits in the basket. Eye lines of the kids. 

(3) 

Lightness difference between 
white and dark areas in the boats, 
and between dark sea and light 
sky. 
Colorfulness difference between 
the houses. 

Lightness difference between the 
light grape and dark areas in the 
basket. 
Colorfulness difference between 
the fruits and the table. 

Lightness difference between the 
light faces and dark hairs in the kids. 
Lightness and Colorfulness 
differences between the kids’ faces 
and the wall behind them. 

(4)  Red plums  
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Modeling Image Contrast 

Pixel-based color differences at eight resolutions  
The previous section showed that the observers estimated 

image contrast using their own rules composed of global and four 
local appearances. These appearances can evoke a common 
perceptual effect on an image: when these appearances increase, 
differences in chroma and lightness either within one object or 
between adjacent objects in the image become larger. The mean of 
the color differences computed between neighboring pixels in an 
image was therefore chosen as an image metric for modeling 
image contrast. In order to take into account both local and global 
differences corresponding to both the local and global appearances, 
pixel-based color differences were calculated at eight different 
image resolutions. This approach to modeling image contrast is 
similar to that of Matković [7] in which pixel-based luminance 
differences were used to rate the contrast of achromatic images 
containing different contents. 

The pixel resolution of the display studied was 1024 (H) × 
768 (V) and the experimental viewing distance was 2 m. The 
maximum spatial frequency that observers could detect was 19.224 
cpd (cycles per degree of visual angle) horizontally and 25.631 cpd 
vertically at this distance. In the frequency domain, this equates to 
a limit of 31.957 cpd. For the image at half the original resolution 
(512×384), four neighboring pixels (2×2) from the 1024×768 
image were treated as one new pixel. The color of this new pixel 
was simply the average of the four neighboring pixels. In the same 
manner, the 256×192 image was generated from the 512×384 
image, and so on for the other sub-sampled images. Table 2 
introduces the resulting eight image-resolutions at each of which 
pixel-based color difference was computed. In the second row, the 
values correspond to the frequency domain maxima. 

In calculating color difference, three color spaces, 
CIECAM02, CAM02-UCS and CIELAB, were used [10,12]. 
Eqns. (2), (3) and (4) describe three color-difference equations in 
the three color spaces. Two weighting parameters (KL = 1 and 2) 
were applied to the lightness difference so as to control the 
contribution of lightness difference in the total color difference. 

2
C

2
C

2
L02CIECAM ba)K/J(E ΔΔΔΔ ++=   (2) 

2
M

2
M

2
LUCS02CAM ba)K/J(E ′+′+′=− ΔΔΔΔ  (3) 

2*2*2
L

*
CIELAB ba)K/L(E ΔΔΔΔ ++=      (4) 

The color differences between a pixel and its surrounding pixels 
were calculated and averaged at each pixel. The color difference 
value at each pixel was averaged over all pixels in an image, 
giving a pixel-based color difference for the image. The pixel-
based color difference was computed for each training image × 23 
manipulations including the original version. The category-scaling 
data given from the observers were converted into equal-interval 
scale values using Case V of Thurstone’s law of comparative 
judgments. 

All the pixel-based color-difference values and the scale 
values were re-calculated on a relative scale by dividing those of 
each of the original image and 22 manipulated images by those of 
the original image. The ratio was therefore unity for the original 
image but greater than or less than unity for the 22 manipulated 
images. These ratios were image independent, and thus were 
averaged over the six training images for each of the original 
image and 22 manipulated images, resulting in 23 pixel-based 
color-difference ratios and 23 scale-value ratios of perceived 
image contrast. The computation was repeated at the eight image 
resolutions and in the three color spaces (CIECAM02, CAM02-
UCS and CIELAB). 

Correlations between pixel-based color-difference 
ratios and scale-value ratios 

Pearson correlation coefficients were calculated between the 
23 scale-value ratios and 23 pixel-based color-difference ratios at 
each of the eight image resolutions. The three color spaces 
(CIECAM02, CAM02-UCS and CIELAB) and two weighting 
parameters (KL =1 and 2) were used in the computation of color 
difference. Figure 2 plots the correlation coefficients computed 
between the 23 pixel-based color-difference ratios in CAM02-UCS 
with KL=1 and the 23 scale-value ratios, against the eight image 
resolutions. The results calculated using CIECAM02 and CIELAB 
are not presented in Figure 2, because the general trends were not 
significantly affected by the different color space and KL values. In 
Figure 2, the data points are shown differently for three 
independent data sets corresponding to the three image-
manipulation methods, and for one combined data set considering 
all manipulations together. Among the correlation coefficients 
calculated using the data of all manipulations (▲ in Figure 2), the 
highest coefficient is found at 256×192 resolution. The correlation 
coefficients are about 0.90 at all image resolutions for the images 
altered in the chroma (○) or lightness (■) domains. 

Table 2: Eight different resolutions at which pixel-based color 
difference was computed. 

Pixel 
Resolution 

Maximum 
Frequency 

(cpd) 

Pixel 
Resolution 

Maximum 
Frequency 

(cpd) 

1024×768 31.957 64×48 1.997 

512×384 15.979 32×24 0.999 

256×192 7.989 16×12 0.499 

128×96 3.995 8×6 0.250 
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Figure 2. The eight correlation coefficients at the eight image resolutions.  
The data are shown with respect to the different manipulations methods. 
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For the correlation coefficients calculated using the data of 
images manipulated in the sharpness domain (+), the highest 
coefficient is seen at the 1024×768 resolution. The variation of 
pixel-based color differences calculated in resolutions of 64×48 – 
8×6 do not seem to match the changes of perceived image contrast, 
i.e. coefficients at these resolutions are close to zero. As image 
sharpness increases, the visibility of detail in images increases due 
to larger color differences between neighboring pixels in the edge 
areas of the images. This leads to an increase in image contrast. 
Therefore, it can be thought that the increased image contrast due 
to enhanced visibility of detail is not predicted by the pixel-based 
color differences at low image resolutions (< 256×192). 

The above result suggests that the pixel-based color 
differences from up to eight different resolution images need to be 
combined with different weights to model image contrast. The 
image contrast model will then be able to predict variations of the 
perceived contrast of the images that are visually different in all or 
each of the three domains, lightness, chroma and sharpness. 

New image contrast model 
The image contrast model was developed by combining all or 

some of the pixel-based color-difference ratios at the eight 
different resolution images with optimized weights. This is 
expressed in Eq. (5). The values of the eight weights, w1 – w8, 
were optimized in order to give the least difference between the 
experimental image contrast and the image contrast predicted by 
Eq. (5). 

y = w1×PBCDR(31.957) + w2×PBCDR(15.979) +  
              w3×PBCDR(7.989) + w4×PBCDR(3.995) +  
              w5×PBCDR(1.997)  + w6×PBCDR(0.999) +  
              w7×PBCDR(0.499) + w8×PBCDR(0.250)  (5) 

where j is the maximum frequency achievable at each of the eight 
image resolutions (see Table 2), PBCDRj is pixel-based color-
difference ratio at j, and y is the predicted perceived image-
contrast ratio. 

Table 3 gives the optimized weights for seven image contrast 
models that were derived using seven different combinations of 
PBCDRj in CAM02-UCS with KL=1. Those derived using the 
calculated results in CIELAB and CIECAM02 are not described 
 

here, but the evaluation of all the developed models will be given 
in the following section. In the top three models in Table 3, the 
smallest weights are seen for the color differences computed in the 
three lowest resolution images among the eight. This implies that 
the pixel-based color differences calculated for the images whose 
resolutions are greater than 32×24 (0.999 cpd) will be sufficient 
for modeling image contrast. 

Performance of the image contrast model 
The coefficient of variation, CV, was used to compute 

observer variations in the psychophysical experiment and to 
evaluate the developed-model performance. The mean CV values 
for intra- and inter-observer agreement were similar with a value 
of 18, indicating that observers performed similarly within an 
observer and between observers in the assessment of image 
contrast. 

For the six training and two testing images, perceived image 
contrast was predicted using all the developed models: seven 
combinations of color-difference data calculated from the images 
at eight different resolutions × CIELAB, CIECAM02 and CAM02-
UCS × KL =1 and 2. The coefficient of variation, CV, was then 
calculated between the predicted and experimental image-contrast 
data. Figures 3(a) and 3(b) show the resulting CV values, 
respectively, for the two testing and six training images, with 
respect to the three color spaces and the two weighting parameters. 
The CV value corresponding to the observer variation is indicated 
by a red line in the figures. In each group, seven bars indicate the 
number of different resolution images from each of which pixel-
based color difference was calculated to derive the image contrast 
model. For example, the CV value of the light grey bar expresses 
the performance of the model developed using the color-difference 
data obtained from all eight different resolution images. 

The main tendencies for both training and test images are 
summarized as follows. 
• Overall, the pixel-based color differences computed with KL=1 

have better agreement with the scale values of observer-judged 
contrast than those calculated with KL=2, i.e. smaller CV values 
for KL=1 than those for KL=2. This suggests that there is no need 
to give smaller weight to the lightness difference in a total color 
difference when pixel-based color difference is used as a 
correlate of image contrast.  

Table 3. Optimized weights for seven image contrast models derived using seven different combinations of color-difference data 
calculated from the eight different resolution images (in CAM02-UCS with KL =1). 

Image resolution 
(Max. frequency) 

1024×768 
(31.957) 

512×384 
(15.979) 

256×192 
(7.989) 

128×96 
(3.995) 

64×48 
(1.997) 

32×24 
(0.999) 

16×12 
(0.499) 

8×6 
(0.250) 

Weights w1 w2 w3 w4 w5 w6 w7 w8 

Model 1 0.08 0.14 0.18 0.19 0.18 0.14 0.08 0.0001 

Model 2 0.11 0.18 0.22 0.22 0.18 0.11 0.0001  

Model 3 0.14 0.22 0.25 0.22 0.14 0.0001   

Model 4 0.18 0.28 0.28 0.20 0.02    

Model 5 0.19 0.28 0.29 0.21     

Model 6 0.14 0.33 0.50      

Model 7 0.001 0.95       
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• The smallest CV values for both training and testing images are 
found for CAM02-UCS with KL=1. 

• All the CV values are smaller than the mean CV value for the 
observer variations (18), suggesting perceived image contrast 
can be well predicted by any of the image contrast models 
developed in the three color spaces with the two weighting 
parameters. 

• Thus, it is demonstrated that the pixel-based color difference 
computed at different resolutions could successfully model 
image contrast for images varied in lightness, chroma and 
sharpness domains.  

• Considering simplicity and performance, the two models (orange 
and black) indicated by blue arrows are recommended. These 
models were derived using the color-difference data that were 
calculated from the three highest resolution images, i.e. 
1024×768, 512×384 and 256×192 (32 cpd, 16 cpd and 8 cpd), in 
CAM02-UCS with KL=1. 

Figures 4(a) and 4(b) show comparisons between the 
observer-judged contrast data and the predictions made by the 
model (orange in Figure 3), for the testing and training images, 
respectively. The data points are shown using three different 
symbols for the three image-manipulation domains. A 45° line 
representing a perfect agreement between the experimental and 
predicted data is also given. As all data points are located close to 

the 45° line, it can be concluded that this model successfully 
predicts image contrast variations arising either from changes in 
image lightness, chroma and sharpness. 

Relationship between the optimized eight weights 
and the contrast sensitivities 

The contrast sensitivities at the eight image resolutions were 
calculated using Barten’s contrast sensitivity function [13] in 
which 44.9 cd·m-2 – the average luminance of the eight test mages 
– and 26.3° – the angular size of the display studied at 2 m 
viewing distance – were used as input parameters. These were 
compared with the eight optimized weights of the image contrast 
model built in CAM02-UCS with KL=1 (see Table 3). Figure 5 
compares these eight weights with the calculated contrast 
sensitivities at the eight image resolutions (the maximum 
frequency achievable at that resolution is given in parentheses). 

The maximum weight is seen between the resolutions of 
64×48 (2 cpd) and 256×192 (8 cpd). Human eyes are, however, 
most sensitive to spatial frequencies of 4 cpd. The contrast 
sensitivity suddenly drops after 4 cpd whereas the weight gradually 
decreases. The weights are much higher than the contrast 
sensitivities at 8, 16 and 32 cpd. In other words, the contrast 
sensitivity function under-estimates the importance of high-
frequency information in images. The cause of this deviation is 
thought to be due to the difference in experimental conditions 
where achromatic sinusoidal patterns were used to measure eye 

 

0.5

0.7

0.9

1.1

1.3

1.5

0.5 0.7 0.9 1.1 1.3 1.5

Predicted Perceived Image-Contrast

P
er

ce
iv

ed
 Im

ag
e-

C
o

n
tr

as
t

Lightness

Chroma

Sharpness

0.5

0.7

0.9

1.1

1.3

1.5

0.5 0.7 0.9 1.1 1.3 1.5

Predicted Perceived Image-Contrast

P
er

ce
iv

ed
 Im

ag
e-

C
o

n
tr

as
t

Lightness

Chroma

Sharpness

 
                    (a)                                                  (b)           

Figure 4. Plot of the experimental image-contrast data against the 
predicted image-contrast data for (a) the two testing images and (b) the 
six training images.  
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 Figure 3. Comparison of the CV values calculated between the experimental image-contrast data and the image contrast predicted by all the 
developed models (a) for the two testing images and (b) for the six training images. 
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Figure 5. The comparison of contrast sensitivities with the values of the 
weights at the eight image resolutions. 
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contrast sensitivity, while complex color images were used to 
establish contributions (weights) of various spatial-frequency 
components to the perceived image contrast. 

Limitations of the developed image-contrast 
model 

The developed image-contrast model is for general display 
development use, e.g. evaluating an existing model against a new 
type of display in terms of image contrast. If the predicted image-
contrast ratio is 1.2, this indicates that an image presented on the 
new display may appear to have 20 % more contrast than that on 
the existing one. 

In the first sub-section (Pixel-Based Color Differences at 
Eight Resolutions), which used pixel-based color differences and 
scale values, converting this original data onto a relative scale 
requires only the original image (rather than any of the 22 
manipulations) as a denominator. The manipulated images may 
look darker, sharper, or have different contrast or colorfulness 
compared with the original image due to the rendering process. 
Therefore, the developed image-contrast model is limited to being 
used on displays for which the previous criteria are met. Certainly 
there are other appearance-comparison cases and these can be 
considered by using each of the manipulated images as a 
denominator in the conversion of the original data onto a relative 
scale. The purpose of this work was, however, to verify some 
specific approaches applied to determining image contrast. A 
comprehensive image-contrast model will be introduced 
elsewhere, which will be applicable to the majority of cases 
involving the industrial comparison of displays having different 
characteristics. 

Conclusions 
The subjective rules governing the perceptual responses for 

evaluating image contrast were established from the observers’ 
judgments against the eight natural images and their 22 
manipulations in lightness, chroma and sharpness dimensions. 
Globally, vividness, clearness and colorfulness appearances were 
important. Locally, four criteria were addressed: reproduction of 
detail, distinguishability of objects from their surrounding area, 
considering either or both lightness-difference and colorfulness-
difference, and the colorfulness of objects. The observers 
evaluated image contrast based on both global and local 
appearances. These established rules can be used to enhance image 
contrast. 

All or some of the pixel-based color differences calculated 
from eight image resolutions were selected as a correlate of image 
contrast, since this factor can take into account image contrast 
changes arising from variations in the above global and local 
appearances. The color differences were calculated in three color 
spaces, CIELAB, CIECAM02 and CAM02-UCS using two 
weighting parameters controlling the contribution of lightness 
difference to total color difference. Image contrast models were 
developed from the optimized six functions relating the pixel-
based color differences (three color spaces × two weighting 
parameters) to the scale values of observer-judged contrast. The 
highest correlation with the observer-judged contrast was found 
from the color differences computed in CAM02-UCS space and 
with equal contributions of lightness, chroma and hue differences. 
The deviation between the judged contrast data and those predicted 

by all six models was, however, smaller than the typical observer 
variation. This indicates that combined pixel-based color 
difference at different image resolutions is suitable for use in 
estimating visual image contrast. 

References 
[1] Flat Panel Display Measurement Standard (Version 2.0), Video 

Electronics Standards Association, Milpitas, CA, USA (2001). 
[2] Tips for Buying Flat Panel Display TVs, 

http://www.fpdl.nist.gov/tips.html, NIST (2007).  
[3] F.W. Campbell and J.G. Robson, “Application of Fourier Analysis to 

the Visibility of Gratings,” Jour. Physiol. - London 197, 551 (1968). 
[4] E. Peli, “Contrast in Complex Images,” Jour. Opt. Soc. Am. 7, 2032 

(1990).     
[5] P.J. Bex and W. Makous, “Spatial Frequency, Phase, and the Contrast 

of Natural Images,” Jour. Opt. Soc. Am. 19, 1096 (2002). 
[6] G.S. Rubin and K. Siegel, “Recognition of Low-Pass Filtered Faces 

and Letters,” Invest. Ophthalmol. and Vis. Sci. Suppl. 25, 71 (1984). 
[7] K. Matković, L. Neumann, A. Neumann, T. Psik and W. Purgathofer, 

Global Contrast Factor - A New Approach to Image Contrast, 
International Symposium on Computational Aesthetics in Graphics, 
Visualization and Imaging, Girona, Spain, pg. 159. (2005).   

[8] A.J. Calabria and M.D. Fairchild, “Perceived Image Contrast and 
Observer Preference I. The Effects of Lightness, Chroma, and 
Sharpness Manipulations on Contrast Perception,” Jour. Imaging Sci. 
and Technol. 47, 479 (2003).     

[9] A.J. Calabria and M.D. Fairchild, “Perceived Image Contrast and 
Observer Preference II. Empirical Modeling of Perceived Image 
Contrast and Observer Preference,” Jour. Imaging. Sci. and Technol. 
47, 494 (2003).  

[10] CIE Publication 159:2004, A Color Appearance Model for Color 
Management Systems: CIECAM02, Vienna, 2004. 

[11] N. Moroney, Local Color Correction Using Non-Linear Masking, 
IS&T/SID’s 8th Color Imaging Conference, Scottsdale, Arizona, pg. 
108. (2000). 

[12] M.R. Luo, G.Cui and C.J. Li “Uniform Color Spaces Based on 
CIECAM02 Color Appearance Models,” Color Res. Appl. 31, 320 
(2006). 

[13] P. Barten “Evaluation of Subjective Image Quality with the Square-
Root Integral Method,” Jour. Opt. Soc. Am. 7, 2024 (1990). 

Author Biography 
SEO YOUNG CHOI received her PhD degree in 2008 from the Dept. 

of Color Science at the University of Leeds. Her current interests include 
the development of new types of display and improving digital-signal 
workflow. 

M. RONNIER LUO is Professor of Color and Imaging Science at the 
Department of Color Science in the University of Leeds. He has over 300 
publications in the field of color and imaging science, and affective color 
design. He is actively involved with the Commission International de 
l'Éclairage (CIE) as the Director of Division 1: Vision & Color.  

Dr. MICHAEL R POINTER received his PhD from Imperial College, 
London and then worked in the Research Division of Kodak Limited on 
fundamental issues of color science applied to the photographic system. 
After a period at the National Physical Laboratory, he is now a Visiting 
Professor at the University of Leeds as well as working as a consultant 
scientist. He has authored over 70 scientific papers, is a Fellow of The 
Royal Photographic Society and the Institute of Physics, and Secretary of 
CIE Division 1 (Vision & Color). 

Dr. GUIHUA CUI received B.S. and M.S. degrees in optical 
engineering in 1984 and 1987 respectively from Beijing Institute of 
Technology (China), and Ph.D. degree in color science from University of 
Derby (UK) in 2000. 

314 ©2008 Society for Imaging Science and Technology




