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Abstract
Wiener filtering has many applications in the area of imag-

ing science. In image processing, for instance, it is a common
way of reducing Gaussian noise. In color science it is often used
to estimate reflectances from camera response data on a pixel by
pixel basis. Based on a priori assumptions the Wiener filter is the
optimal linear filter in the sense of the minimal mean square error
to the actual data. In this paper we propose a spatially adaptive
Wiener filter to estimate reflectances from images captured by a
multispectral camera. The filter estimates pixel noise using local
spatial neighborhood and uses this knowledge to estimate a spec-
tral reflectance. In the hypothetical case of a noiseless system, the
spatially adaptive Wiener filter equals the standard Wiener filter
for reflectance estimation. We present results of various simu-
lation experiments conducted on a multispectral image database
using a 6-channel acquisition system and different noise levels.

Introduction
Estimation of reflectance spectra from camera responses

is generally an ill-posed problem since a high dimensional
signal is reconstructed from a relatively low dimensional signal.
Associated with the development of multispectral camera systems
many techniques were developed to tackle this problem. The
basic approach to achieve a good estimation of scene reflectance
spectra is to utilize as much information from the underlying
capturing process as possible. Success is commonly evaluated
through the spectral root mean square difference from the mea-
sured reflectance spectrum or color differences (e.g. CIEDE2000
[1]) for a set of selected illuminants. We will give a short and by
far not exhaustive overview of reflectance reconstruction methods
in the following text.

Information used by reflectance estimation methods may
include the knowledge of the acquisition illuminant, the channel
sensitivities of the camera, noise properties of the system and a
priori knowledge of the source reflectance.

Most of the methods listed below require a priori knowl-
edge of the spectral sensitivities of the camera system and of
the acquisition illuminant. A common approach is to consider
properties of natural reflectance spectra as additional a priori
knowledge. These properties include positivity, boundedness and
smoothness. Low effective dimensionality [2]. of natural re-
flectances is the reason why many methods use a low-dimensional
linear model to describe spectra such as introduced in this context
by Maloney and Wandell [3].

Some methods utilize a low dimensional linear model of
reflectances to calculate the smoothest reflectance of all device

metameric spectra (all spectra that lead to the given sensor
response)[4, 5, 6]. Other methods use nearest neighbor type
approaches within higher dimensional linear models [7] or adap-
tive principle component analysis (PCA) [8]. It was observed
that a combination of multiple techniques can lead to improved
reconstructions [9]. DiCarlo and Wandell extended the linear
model in order to find reflectances lying on a submanifold that
may describe the set of captured reflectances more accurate [10].

When camera sensitivities are not available, some approaches
treat the system as a black box and use captured color-targets with
known reflectances in order to construct a response-to-reflectance
transformation [11, 12, 13]. The accuracy of these target-based
methods is by construction highly dependent on the training
target [14].

If additional information about the captured spectra is known,
e.g. by a low resolution spectral sampling of the image [15] or
by capturing printed images knowing the model of the printing
device [16, 17], the accuracy of the spectral reconstruction can be
further improved.

A special linear estimation technique widely used in spec-
tral reconstruction is the Wiener filter. Based on the assumption
of a normal distribution of reflectances and system noise and
the assumption that noise is statistically independent of the
reflectances, it is the optimal linear filter in the sense of the
minimal mean square error to the actual reflectance. The Wiener
filter has the form

r = KrΩT (ΩKrΩT +Kε )−1c (1)

where Kr is the covariance matrix of reflectance spectra, Kε is the
covariance matrix of additive noise, c is the sensor response, Ω is
the device lighting matrix described in detail in eq. (2) and r is
the reconstructed spectrum.

Several factors can prevent the Wiener filter from perform-
ing optimally in the sense of the minimal mean square error:

1. The reflectance covariance matrix Kr can only be approxi-
mated suboptimally. A minimal knowledge approach uses a
Toeplitz matrix [18]. Other approaches use a representative
set of reflectances to estimate the covariance matrix [19].
Shen and Xin [20, 21] proposed a method that adaptively se-
lects and weighs these training spectra in order to estimate
the reflectance covariance matrix based on the actual sen-
sor response. A Bayesian approach of Zhang and Brainard
highly related to the Wiener filter estimates the covariance
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matrix using a low dimensional space of reflectance weights
[22].

2. The Wiener filter cannot ensure the positivity and bound-
edness of the estimation. Both are important properties of
natural reflectances. In the approach of Zhang and Brainard
[22] that performs a Gaussian fit in a low dimensional space
of reflectance weights all weights that correspond to re-
flectance functions with negative values have been excluded.
This technique shall ensure the positivity of reconstructions.

3. Noise plays an important role in image acquisition systems.
The accuracy of the Wiener estimation is highly dependent
on the magnitude of system noise. Furthermore, the Wiener
filter assumes signal-independent noise and disregards the
signal-dependent shot noise. In eq. (3) the noise sources
in electronic imaging devices are sketched and a commonly
used noise model is introduced. An additional problem is
the estimation of the noise covariance matrix. The accu-
racy of the Wiener reconstruction is highly dependent on
the quality of the noise covariance estimation. Shimano [23]
proposed a method for estimating this noise covariance ma-
trix and achieved a good performance in terms of colorimet-
ric and spectral RMS errors compared to multiple methods
described above [24].

The first two problems above are not addressed in this
paper. If desired, the algorithms proposed by other authors can
be incorporated to the proposed spatially adaptive Wiener filter.

Our paper focuses solely on the noise problem. The obser-
vation of the large dependency of the Wiener estimation on the
magnitude of the noise variance leads to the idea of reducing
noise based on the local pixel neighborhood in order to improve
the reconstruction of the Wiener filter.

The idea of combining spectral reflectance reconstruction
with spatial noise reduction is not new. In a recent article
Murakami et al. [25] proposed a spatio-spectral Wiener filter,
which was called 3D Wiener (merging of 2 spatial dimension and
1 spectral dimensions in a single Wiener filter). In Murakami’s et
al. article a sequence of spatial Wiener filtering followed by spec-
tral Wiener filtering was investigated as well and called 2D+1D
Wiener filter. The 2D Wiener filter is applied channel-wise on the
sensor-response image. The noise variance is estimated globally
from the resulting image and used in the subsequent spectral 1D
Wiener filter.

The approach proposed in this paper goes beyond 2D+1D
Wiener filtering but does not go far as 3D Wiener filtering. In
contrast to Murakami’s et al. 2D+1D approach our 2D noise
reduction is performed on all channels simultaneously using a
single Wiener filter. The noise covariance matrix is updated
locally and propagated to the spectral Wiener filter. Both steps
can be combined as a single operator, which enables a simple
parallel computing, similar to Murakami’s et al. 3D Wiener filter.
We will derive the spatially adaptive Wiener filter by Bayesian
inference. Its noise reduction and propagation properties will be
especially emphasized.

Model of a Linear Acquisition System
In this paper we consider linear acquisition systems. The

discrete model of a n-channel capturing system is given by the
following formula

c = DLr = Ωr (2)

where c ∈ [0,1]n is the sensor response, r ∈ [0,1]N the vector rep-
resenting the spectral reflectance and Ω the n×N dimensional
system matrix defined by the product of the matrix D containing
the spectral sensitivities of the system as row vectors, and the di-
agonal matrix L, containing the spectral power distribution of the
acquisition illuminant as diagonal elements. All vector represen-
tations of spectra are samples of continuous spectra at N equidis-
tant wavelengths.

Noise Model
There are two categories of noise in electronic imaging de-

vices: signal-independent and signal-dependent noise. Signal-
independent noise includes thermal noise, reset noise and ampli-
fier noise. It can be well modeled by a normal distribution with
zero mean. Signal-dependent noise results from the measurement
uncertainty due to the quantum nature of light and is called pho-
ton shot noise or simply shot noise. Shot noise follows a Poisson
distribution, which can be well approximated by a signal depen-
dent normal distribution if the number of photons detected by the
device is large. The general noise model for an image acquisition
system is given by the following formula

c = Ωr + ε = Ωr +G(Ωr)ε1 + ε2 (3)

where

G(Ωr) = G((ω1, . . . ,ωn)T r) =




g(ωT
1 r) 0

. . .
0 g(ωT

n r)


 (4)

models the signal dependency and ε1 ∼N (0,K1 = σ2
1 I) and ε2 ∼

N (0,K1 = σ2
2 I) follow normal distributions with zero mean.

Since ε1 and ε2 can be assumed as statistically independent the
overall noise

ε ∼N (0,G(Ωr)K1G(Ωr)T +K2) (5)

is also normally distributed with zero mean.

Derivation of the Spatially Adaptive Wiener
Filter

In image processing applications Wiener filtering is a com-
mon technique to remove Gaussian noise from images. The
Wiener filter is the optimal linear filter in the sense of the min-
imal mean-square error to the noiseless image. In multispectral
imaging the Wiener filter is used to optimally reconstruct spectral
reflectances from camera responses in the sense of the minimal
mean-square error to the original reflectances. In this context the
filter is applied on a pixel-by-pixel basis, without adding infor-
mation of the local pixel-neighborhood. The idea of the spatially
adaptive Wiener filter is to combine both methods in order to add
more information of the underlying process to the reconstruction.
In the following text indexes i and j identify the spatial pixel po-
sition within the image.
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Noise Reduction in the Spatial Domain
We will introduce the Wiener noise-reducing filter by means

of Bayesian inference (see e.g. [26]). Bayesian inference uses
prior knowledge of the distribution p(c′i j) of noiseless sensor re-
sponses c′i j in combination with a likelihood model p(ci j|c′i j) of
the current sensor response ci j given a noiseless sensor response
c′i j . Using this a priori knowledge, the distribution p(c′i j|ci j) of
the noiseless sensor responses c′i j given the actual sensor response
ci j can be estimated by Bayes’theorem. We make the following
assumptions about the a priori distributions

p(ci j|c′i j): Our likelihood model has the following form ci j =
c′i j + ε , where ε is additive noise following a normal distri-
bution with zero mean and covariance matrix Kε . We can as-
sume uncorrelated noise with a diagonal covariance matrix
Kε = σ2

ε I that can be estimated based on captured targets
[23]. The distribution of p(ci j|c′i j) is therefore also normal
with mean c′i j and a covariance matrix Kε . Since c′i j is not
known a priori we assume the mean to be ci j , which results
in the following distribution

p(ci j|c′i j) = N (ci j,Kε ) (6)
p(c′i j): We assume a normal distribution of noise-free sensor re-

sponses
p(c′i j) = N (c̄i j,Ki j). (7)

We estimate the mean c̄i j and covariance matrix Ki j based
on a local pixel neighborhood Ci j of the actual pixel ci j .
This neighborhood can be chosen for instance as a 2m +
1× 2m + 1 rectangular window, i.e. Ci j = {ckl | k ∈ {i−
m, . . . , i+m}, l ∈ { j−m, . . . , j +m}}. In case of such rect-
angular window the distribution has the following mean and
covariance matrix

c̄i j =
1

(2m+1)2 ∑
c∈Ci j

c (8)

Ki j =
1

(2m+1)2−1 ∑
c∈Ci j

(c− c̄i j)(c− c̄i j)T (9)

In order to calculate the posteriori distribution p(c′i j|ci j) of the
noiseless sensor response c′i j given the actual sensor response ci j
we can use Bayes’theorem. The resulting distribution is again
normal and has the following form

p(c′i j|ci j) =
p(c′i j)p(ci j|c′i j)

p(ci j)
(10)

= N (Wi j(ci j− c̄i j)+ c̄i j,Ki j−Wi jKi j). (11)

where

Wi j = Ki j(Ki j +Kε )−1 (12)

is the noise-reducing Wiener filter. The maximum a posteriori
estimate is the mean Wi j(ci j− c̄i j)+ c̄i j of the posteriori distribu-
tion. This value is the minimum mean square error estimator for
the noiseless sensor response given the noisy sensor response ci j .

Reflectance Reconstruction from the Noise-
Reduced Pixels

We propose the Wiener filter for the spectral reflectance re-
construction from the previously noise-reduced pixels. We will
derive this filter by means of Bayesian inference as well. The

prior distribution is the distribution p(ri j) of reflectances ri j and
the likelihood model p(c′i j|ri j) is the distribution of noise-reduced
sensor responses c′i j given a reflectance spectrum ri j . We make the
following assumption about the prior distributions:

p(c′i j|ri j): Our likelihood model has the following form c′i j =
Ωri j + ε̂ , where ε̂ is additive noise already attenuated by
the Wiener filter in eq. (12). This results in a normal distri-
bution with mean Ωri j and a covariance matrix that equals
the covariance matrix of the posteriori distribution p(c′i j|ci j)
shown in eq. (11), i.e.

p(c′i j|ri j) = N (Ωri j,Ki j−Wi jKi j) (13)
p(ri j): We assume a normal distribution of reflectance spectra

with zero mean
p(ri j) = N (0,Kr). (14)

The covariance matrix Kr can be estimated using a Toeplitz
matrix [18] or by using a representative set of reflectance
spectra r1, . . . ,rq as follows

Kr =
1

q−1

q

∑
i=1

(ri− r̄)(ri− r̄)T , r̄ =
1
q

q

∑
i=1

ri (15)

The posteriori distribution p(ri j|c′i j) of spectral reflectances ri j

given the noise-reduced sensor response c′i j can be calculated by
Bayes’theorem and is again normal

p(ri j|c′i j) =
p(ri j)p(c′i j|ri j)

p(c′i j)
(16)

= N (Ŵi jc′i j,Kr−Ŵi jΩKr). (17)

where

Ŵi j = KrΩT (ΩKrΩT +Ki j−Wi jKi j)−1 (18)

is the reflectance reconstructing Wiener filter based on already
noise-attenuated sensor responses. The maximum a posteriori es-
timate is the mean Ŵi jc′i j of the posteriori distribution. This value
has the minimum mean square difference to the actual reflectance
spectrum given the noise-reduced sensor response.

The Spatially Adaptive Wiener Filter
We can combine the noise-attenuating and the reflectance re-

constructing Wiener filter by inserting the mean of the posteriori
distribution defined in eq. (11) into the mean of the posteriori dis-
tribution defined in eq. (17). The result is the spatially adaptive
Wiener filter

Wi j(ci j) = Ŵi jWi j(ci j− c̄i j)+Ŵi j c̄i j (19)

where c̄i j is the mean sensor response in a pixel neighborhood of
ci j (see e.g. eq. (9)), Wi j is defined in eq. (12) and Ŵi j is defined
in eq. (18).

The spatially adaptive Wiener filter reduces to the tradi-
tional reflectance reconstructing Wiener filter in case of vanishing
noise, i.e.

Kε → 0⇒Wi j(ci j)→ KrΩT (ΩKrΩT )−1ci j (20)
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Figure 1. sRGB renderings of spectral images used in experiments. Left: FruitsandFlowers, Middle: YoungGirl, Right: WomanFace.

Experiments
The spatially adaptive Wiener filter was tested on three

images that are part of a spectral image database freely available
on the website www.multispectral.org. Figure 1 shows the images
rendered as sRGB images for illuminant CIE-D65. For our simu-
lation experiments we used spectral sensitivity measurements of
a modified Sinar 6-channel camera, which are shown in Figure
2. The acquisition illuminant was CIE-D65. In a first step the
spectral camera sensitivities and the acquisition illuminant were
used to render a camera response 6-channel image from each of
the three spectral images.

In a second step we added different amounts of noise to
each of the three 6-channel images by means of the noise model
introduced in eq. (3). For this purpose signal-dependent and
signal-independent noise were added based on all combina-
tions of σ1 = 0,0.002, . . . ,0.01 and σ2 = 0,0.002, . . . ,0.01,
which result in 36 different images for each of the three
corresponding spectral images. These images were used to
estimate the spectral reflectances using the standard Wiener filter
(see eq. (1)) and the spatially adaptive Wiener filter (see eq. (19)).

To estimate the spectral reflectance covariance matrix Kr,
spectral reflectance measurements of 1269 Munsell color chips
were used according eq. (15). The Munsell spectra are available
from the Information Technology Dept., Lappeenranta University
of Technology, Finland. The noise covariance matrix Kε was set
to Kε = (

√
0.5σ1 +σ2)2I. For the spatially adaptive Wiener filter

a simple 3×3 window was used.

Results and Discussion
Figure 3 shows the average and 95 percentile spectral

RMS reconstruction error against the signal to noise ratio for
all images. A detailed breakdown is shown in Figures 4-6,
where the average spectral RMS error is plotted against the
signal-dependent and signal-independent noise. The table shows
the numerical results for σ1 = σ2 = 0,0.002, . . . ,0.01.
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Figure 2. Normalized spectral sensitivities of the modified Sinar 6-channel

camera

For the noise-free images the results for the Wiener filter
and the spatially adaptive Wiener filter are similar, which
validate the claim in eq. (20). For all other noise levels, both
signal-dependent and signal-independent, the spatially adaptive
Wiener filter outperforms the normal Wiener filter. The higher
the noise level the larger the difference between the spectral RMS
reconstruction errors. The results show that the improvement with
respect to error rates in case of high noise levels is significant.
For the test images YoungGirl and WomanFace it can reach up to
25% for the highest noise level. Not only the average spectral
RMS errors are reduced also the 95 percentile, standard deviation
and maximal errors are diminished.

To calculate the spatially adaptive Wiener filter two n × n
matrices have to be inverted for each pixel, where n is the number
of channels of the image acquisition system. As a consequence
the numerical complexity to calculate the spatially adaptive
Wiener filter is much higher than the complexity of the normal
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Figure 3. Average (left) and 95 percentile (right) spectral RMS error against signal to noise ratio (SNR).

Wiener filter. The decision to favor the spatially adaptive Wiener
filter over the normal Wiener filter therefore strongly depends on
the application and factors like noise level, number of channels n,
available hardware, real-time requirements etc.

Spectral RMS results

Adaptive Wiener Wiener
FruitandFlowers

σ1,σ2 Mean Std Max Mean Std Max
0.000 0.020 0.007 0.066 0.020 0.007 0.066
0.002 0.024 0.012 0.082 0.025 0.013 0.084
0.004 0.025 0.013 0.087 0.028 0.016 0.095
0.006 0.027 0.015 0.099 0.031 0.018 0.111
0.008 0.028 0.016 0.099 0.033 0.021 0.125
0.010 0.030 0.017 0.104 0.035 0.023 0.133

YoungGirl
σ1,σ2 Mean Std Max Mean Std Max
0.000 0.012 0.004 0.026 0.012 0.004 0.026
0.002 0.015 0.004 0.038 0.019 0.006 0.044
0.004 0.019 0.006 0.048 0.028 0.010 0.060
0.006 0.023 0.008 0.059 0.035 0.013 0.073
0.008 0.028 0.010 0.064 0.040 0.014 0.080
0.010 0.031 0.011 0.075 0.043 0.015 0.089

WomanFace
σ1,σ2 Mean Std Max Mean Std Max
0.000 0.009 0.004 0.019 0.009 0.004 0.019
0.002 0.012 0.005 0.029 0.016 0.007 0.038
0.004 0.015 0.007 0.041 0.025 0.012 0.055
0.006 0.020 0.010 0.060 0.031 0.016 0.072
0.008 0.024 0.012 0.061 0.035 0.018 0.075
0.010 0.027 0.014 0.067 0.039 0.019 0.077

Conclusion
A spatially adaptive Wiener filter for reflectance estimation

from camera signals was derived using Bayesian inference. For

this purpose a noise-reducing Wiener filter and a spectral recon-
struction Wiener filter were combined to a single filter using lo-
cal propagation of the noise covariance matrix. The filter re-
duces to the normal spectral reconstruction Wiener filter in case
of vanishing noise. In case of signal-dependent as well as signal-
independent noise it outperforms the normal Wiener filter in terms
of spectral RMS errors.
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Figure 4. Average spectral RMS errors for image: FruitAndFlowers
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